Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer

阿法替尼 埃罗替尼 医学 吉非替尼 肺癌 靶向治疗 表皮生长因子受体 肿瘤科 表皮生长因子受体抑制剂 临床试验 酪氨酸激酶抑制剂 内科学 癌症
作者
Chee-Seng Tan,David Gilligan,Simon Pacey
出处
期刊:Lancet Oncology [Elsevier]
卷期号:16 (9): e447-e459 被引量:345
标识
DOI:10.1016/s1470-2045(15)00246-6
摘要

Discovery of activating mutations in EGFR and their use as predictive biomarkers to tailor patient therapy with EGFR tyrosine kinase inhibitors (TKIs) has revolutionised treatment of patients with advanced EGFR-mutant non-small-cell lung cancer (NSCLC). At present, first-line treatment with EGFR TKIs (gefitinib, erlotinib, and afatinib) has been approved for patients harbouring exon 19 deletions or exon 21 (Leu858Arg) substitution EGFR mutations. These agents improve response rates, time to progression, and overall survival. Unfortunately, patients develop resistance, limiting patient benefit and posing a challenge to oncologists. Optimum treatment after progression is not clearly defined. A more detailed understanding of the biology of EGFR-mutant NSCLC and the mechanisms of resistance to targeted therapy mean that an era of treatment approaches based on rationally developed drugs or therapeutic strategies has begun. Combination approaches—eg, dual EGFR blockade—to overcome resistance have been trialled and seem to be promising but are potentially limited by toxicity. Third-generation EGFR-mutant-selective TKIs, such as AZD9291 or rociletininb, which target Thr790Met-mutant tumours, the most common mechanism of EGFR TKI resistance, have entered clinical trials, and exciting, albeit preliminary, efficacy data have been reported. In this Review, we summarise the scientific literature and evidence on therapy options after EGFR TKI treatment for patients with NSCLC, aiming to provide a guide to oncologists, and consider how to maximise therapeutic advances in outcomes in this rapidly advancing area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn发布了新的文献求助10
1秒前
Leonardi给王雨薇的求助进行了留言
1秒前
cloud发布了新的文献求助10
2秒前
英俊的铭应助ww采纳,获得10
3秒前
esyncoms发布了新的文献求助10
3秒前
田様应助fanny采纳,获得10
3秒前
4秒前
GGBOND2024应助小张采纳,获得10
4秒前
5秒前
NexusExplorer应助朱荧荧采纳,获得10
6秒前
8秒前
Jasper应助jjkjkjkjj采纳,获得10
9秒前
9秒前
云中应助天真的半莲采纳,获得10
9秒前
10秒前
Qinqinasm完成签到,获得积分10
10秒前
10秒前
调研昵称发布了新的文献求助10
11秒前
搜集达人应助顺心绮兰采纳,获得10
12秒前
清萍红檀发布了新的文献求助10
13秒前
ww发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
华仔应助young采纳,获得10
16秒前
17秒前
云汐儿应助认真科研采纳,获得10
17秒前
Johann完成签到,获得积分10
17秒前
脑洞疼应助wm采纳,获得10
18秒前
科研通AI2S应助QQQQQQQ采纳,获得10
18秒前
19秒前
20秒前
小葡萄icon完成签到 ,获得积分10
21秒前
Leeny发布了新的文献求助10
22秒前
希望天下0贩的0应助Swan采纳,获得10
22秒前
22秒前
fanny完成签到,获得积分10
23秒前
苗修杰完成签到,获得积分10
23秒前
sb三百问给sb三百问的求助进行了留言
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870