摘要
Advanced MaterialsVolume 18, Issue 17 p. 2330-2334 Communication Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries K. M. Shaju, K. M. Shaju EaStChem, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UKSearch for more papers by this authorP. G. Bruce, P. G. Bruce [email protected] EaStChem, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UKSearch for more papers by this author K. M. Shaju, K. M. Shaju EaStChem, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UKSearch for more papers by this authorP. G. Bruce, P. G. Bruce [email protected] EaStChem, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UKSearch for more papers by this author First published: 28 August 2006 https://doi.org/10.1002/adma.200600958Citations: 216AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Macroporous Li(Ni1/3Co1/3Mn1/3)O2 is prepared by a simple synthesis procedure. The material has excellent electrochemical performance as a high-energy, high-power intercalation electrode (see figure) for rechargeable lithium batteries. The results illustrate the important role of morphology in determining the performance of lithium-ion cathodes. REFERENCES 1 K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783. 10.1016/0025-5408(80)90012-4 CASWeb of Science®Google Scholar 2 J.-M. Tarascon, M. Armand, Nature 2001, 414, 359. 10.1038/35104644 CASPubMedWeb of Science®Google Scholar 3 K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science 2006, 311, 977. 10.1126/science.1122152 CASPubMedWeb of Science®Google Scholar 4 M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Adv. Mater. 1998, 10, 725. 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z CASWeb of Science®Google Scholar 5 M. Wakihara, Mater. Sci. Eng. 2001, R33, 109. 10.1016/S0927-796X(01)00030-4 CASWeb of Science®Google Scholar 6 M. S. Whittingham, Chem. Rev. 2004, 104, 4271. 10.1021/cr020731c CASPubMedWeb of Science®Google Scholar 7 M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, J. Mater. Chem. 2005, 15, 2257. 10.1039/b417616m CASWeb of Science®Google Scholar 8 S. Jouanneau, K. W. Eberman, L. J. Krause, J. R. Dahn, J. Electrochem. Soc. 2003, 150, A1637. 10.1149/1.1622956 CASWeb of Science®Google Scholar 9 N. Yabuuchi, T. Ohzuku, J. Power Sources 2003, 119–121, 171. 10.1016/S0378-7753(03)00173-3 CASWeb of Science®Google Scholar 10 A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk, Nat. Mater. 2005, 4, 366. 10.1038/nmat1368 CASPubMedWeb of Science®Google Scholar 11 T. Ohzuku, Y. Makimura, Chem. Lett. 2001, 642. 10.1246/cl.2001.642 CASWeb of Science®Google Scholar 12 N. Yabuuchi, Y. Koyama, N. Nakayama, T. Ohzuku, J. Electrochem. Soc. 2005, 152, A1434. 10.1149/1.1924227 CASWeb of Science®Google Scholar 13 Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 2001, 4, A200. 10.1149/1.1413182 CASWeb of Science®Google Scholar 14 D. D. MacNeil, Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2002, 149, A1332. 10.1149/1.1505633 CASWeb of Science®Google Scholar 15 K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochim. Acta 2002, 48, 145. 10.1016/S0013-4686(02)00593-5 CASWeb of Science®Google Scholar 16 K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, J. Electrochem. Soc. 2004, 151, A1324. 10.1149/1.1775218 CASWeb of Science®Google Scholar 17 T.-H. Cho, S.-M. Park, M. Yoshio, Chem. Lett. 2004, 704. 10.1246/cl.2004.704 CASWeb of Science®Google Scholar 18 T. H. Cho, S. M. Park, M. Yoshio, T. Hirai, Y. Hideshima, J. Power Sources 2005, 142, 306. 10.1016/j.jpowsour.2004.10.016 CASWeb of Science®Google Scholar 19 S. H. Park, H.-S. Shin, S.-T. Myung, C. S. Yoon, K. Amine, Y.-K. Sun, Chem. Mater. 2005, 17, 6. 10.1021/cm048433e CASWeb of Science®Google Scholar 20 J. Choi, A. Manthiram, J. Electrochem. Soc. 2005, 152, A1714. 10.1149/1.1954927 CASWeb of Science®Google Scholar 21 N. Tran, L. Croguennec, C. Jordy, Ph. Biensan, C. Delmas, Solid State Ionics 2005, 176, 1539. 10.1016/j.ssi.2005.04.039 CASWeb of Science®Google Scholar 22 M.-H. Lee, Y.-J. Kang, S.-T. Myung, Y.-K. Sun, Electrochim. Acta 2004, 50, 939. 10.1016/j.electacta.2004.07.038 CASWeb of Science®Google Scholar 23 T. Nukuda, T. Inamasu, A. Fujii, D. Endo, H. Nakagawa, S. Kozono, T. Iguchi, J. Kuratomi, K. Kohno, S. Izuchi, M. Oshitani, J. Power Sources 2005, 146, 611. 10.1016/j.jpowsour.2005.03.074 CASWeb of Science®Google Scholar 24 W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17479. 10.1021/ja0530568 CASPubMedWeb of Science®Google Scholar 25 S.-C. Yin, Y.-H. Rho, I. Swainson, L. F. Nazar, Chem. Mater. 2006, 18, 1901. 10.1021/cm0511769 CASWeb of Science®Google Scholar 26 N. S. Ergang, J. C. Lytle, H. Yan, A. Stein, J. Electrochem. Soc. 2005, 152, A1989. 10.1149/1.2013212 CASWeb of Science®Google Scholar 27 L. Li, W. H. Meyer, G. Wegner, M. Wohlfahrt-Mehrens, Adv. Mater. 2005, 17, 984. 10.1002/adma.200400695 CASWeb of Science®Google Scholar 28 Z. Wang, Y. Sun, L. Chen, X. Huang, J. Electrochem. Soc. 2004, 151, A914. 10.1149/1.1740781 CASWeb of Science®Google Scholar 29 S. Patoux, M. M. Doeff, Electrochem. Commun. 2004, 6, 767. 10.1016/j.elecom.2004.05.024 CASWeb of Science®Google Scholar 30 J. Choi, A. Manthiram, Electrochem. Solid-State Lett. 2004, 7, A365. 10.1149/1.1792271 CASWeb of Science®Google Scholar 31 S. A. Al-Muhtaseb, J. A. Ritter, Adv. Mater. 2003, 15, 101. 10.1002/adma.200390020 CASWeb of Science®Google Scholar 32 H. Huang, S.-C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 2001, 4, A170. 10.1149/1.1396695 CASWeb of Science®Google Scholar 33 S. R. Mukai, C. Tamitsuji, H. Nishihara, H. Tamon, Carbon 2005, 43, 2628. 10.1016/j.carbon.2005.05.004 CASWeb of Science®Google Scholar 34 K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, A. Stein, Adv. Funct. Mater. 2005, 15, 547. 10.1002/adfm.200400186 CASWeb of Science®Google Scholar 35 M. G. Kim, H. J. Shin, J.-H. Kim, S.-H. Park, Y.-K. Sun, J. Electrochem. Soc. 2005, 152, A1320. 10.1149/1.1926647 CASWeb of Science®Google Scholar 36 B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater. 2003, 15, 3676. 10.1021/cm030299v CASWeb of Science®Google Scholar 37 G.-H. Kim, J.-H. Kim, S.-T. Myung, C. S. Yoon, Y.-K. Sun, J. Electrochem. Soc. 2005, 152, A1707. 10.1149/1.1952747 CASWeb of Science®Google Scholar 38 N. Yabuuchi, T. Ohzuku, J. Power Sources 2005, 146, 636. 10.1016/j.jpowsour.2005.03.080 CASWeb of Science®Google Scholar 39 I. Belharouak, Y.-K. Sun, J. Liu, K. Amine, J. Power Sources 2003, 123, 247. 10.1016/S0378-7753(03)00529-9 CASWeb of Science®Google Scholar 40 S.-T. Myung, M.-H. Lee, S. Komaba, N. Kumagai, Y.-K. Sun, Electrochim. Acta 2005, 50, 4800. 10.1016/j.electacta.2005.02.034 CASWeb of Science®Google Scholar 41 S. Zhang, X. Qiu, Z. He, D. Weng, W. Zhu, J. Power Sources 2006, 153, 350. 10.1016/j.jpowsour.2005.05.021 CASWeb of Science®Google Scholar Citing Literature Volume18, Issue17September, 2006Pages 2330-2334 ReferencesRelatedInformation