数学
格罗德尼克集团
子范畴
诺瑟人
同构(结晶学)
诺瑟环
组合数学
有限生成交换群
有界函数
同源(生物学)
群(周期表)
局部环
纯数学
离散数学
戒指(化学)
域代数上的
结晶学
数学分析
阿贝尔群
有机化学
化学
晶体结构
基因
生物化学
作者
Hans‐Bjørn Foxby,Esben Bistrup Halvorsen
出处
期刊:Journal of K-theory
[Cambridge University Press]
日期:2008-01-09
卷期号:3 (1): 165-203
被引量:10
标识
DOI:10.1017/is008001002jkt023
摘要
Abstract The new intersection theorem states that, over a Noetherian local ring R , for any non-exact complex concentrated in degrees n ,…,0 in the category P(length) of bounded complexes of finitely generated projective modules with finite-length homology, we must have n ≥ d = dim R . One of the results in this paper is that the Grothendieck group of P(length) in fact is generated by complexes concentrated in the minimal number of degrees: if P d (length) denotes the full subcategory of P(length) consisting of complexes concentrated in degrees d ,…0, the inclusion P d (length) → P(length) induces an isomorphism of Grothendieck groups. When R is Cohen–Macaulay, the Grothendieck groups of P d (length) and P(length) are naturally isomorphic to the Grothendieck group of the category M(length) of finitely generated modules of finite length and finite projective dimension. This and a family of similar results are established in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI