XVIII. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure

度量(数据仓库) 数学 牙石(牙科) 有理函数 域代数上的 数学分析 纯数学 计算机科学 医学 数据库 牙科
作者
J.J. Sylvester
出处
期刊:Philosophical transactions of the Royal Society of London [The Royal Society]
卷期号:143: 407-548 被引量:169
标识
DOI:10.1098/rstl.1853.0018
摘要

In the first section of the ensuing memoir, which is divided into five sections, I con­sider the nature and properties of the residues which result from the ordinary process of successive division (such as is employed for the purpose of finding the greatest common measure) applied to f ( x ) and ϕ ( x ), two perfectly independent rational integral functions of x . Every such residue, as will be evident from considering the mode in which it arises, is a syzygetic function of the two given functions; that is to say, each of the given functions being multiplied by an appropriate other function of a given degree in x , the sum of the two products will express a corresponding residue. These multipliers, in fact, are the numerators and denominators to the successive convergents to ϕx / fx expressed under the form of a continued fraction. If now we proceed à priori by means of the given conditions as to the degree in ( x ) of the multipliers and of any residue, to determine such residue, we find, as shown in art. (2.), that there are as many homogeneous equations to be solved as there are constants to be determined; accordingly, with the exception of one arbitrary factor which enters into the solution, the problem is definite; and if it be further agreed that the quantities entering into the solution shall be of the lowest possible dimensions in respect of the coefficients of f and ϕ , and also of the lowest numerical denomination, then the problem (save as to the algebraical sign of plus or minus ) becomes absolutely determinate, and we can assign the numbers of the dimensions for the respective residues and syzygetic mul­tipliers. The residues given by the method of successive division are easily seen not to be of these lowest dimensions; accordingly there must enter into each of them a certain unnecessary factor, which, however, as it cannot be properly called irrelevant, I distinguish by the name of the Allotrious Factor. The successive residues, when divested of these allotrious factors, I term the Simplified Residues, and in article (3.) and (4.) I express the allotrious factors of each residue in terms of the leading coefficients of the preceding simplified residues of f and ϕ . In article (5.) I proceed to determine by a direct method these simplified residues in terms of the coefficients of f and ϕ . Beginning with the case where f and ϕ are of the same dimensions ( m ) in x , I observe that we may deduce from f and ϕ m linearly independent functions of x each of the degree ( m - 1) in x , all of them syzygetic functions of f and ϕ (vanishing when these two simultaneously vanish), and with coefficients which are made up of terms, each of which is the product of one coefficient of f and one coefficient of ϕ . These, in fact, are the very same ( m ) functions as are employed in the method which goes by the name of Bezout’s abridged method to obtain the resultant to (i. e. the result of the elimination of x performed upon) f and ϕ . As these derived functions are of frequent occurrence, I find it necessary to give them a name, and I term them the ( m ) Bezoutics or Bezoutian Primaries; from these ( m ) primaries m Bezoutian secondaries may be deduced by eliminating linearly between them in the order in which they are generated, —first, the highest power of x between two, then the two highest powers of x between three, and finally, all the powers of x between them all: along with the system thus formed it is necessary to include the first Bezoutian primary, and to con­sider it accordingly as being also the first Bezoutian secondary; the last Bezoutian secondary is a constant identical with the Resultant of f and ϕ . When them times m coefficients of the Bezoutian primaries are conceived as separated from the powers of x and arranged in a square, I term such square the Bezoutic square. This square, as shown in art. (7.). is symmetrical above one of its diagonals, and corresponds therefore (as every symmetrical matrix must do) to a homogeneous quadratic function of ( m ) variables of which it expresses the determinant. This quadratic function, which plays a great part in the last section and in the theory of real roots, I term the Bezoutiant; it may be regarded as a species of generating function. Returning to the Bezoutic system, I prove that the Bezoutian secondaries are identical in form with the successive simplified residues. In art. (6.) I extend these results to the case of f and ϕ being of different dimensions in x . In art. (7.) I give a mechanical rule for the construction of the Bezoutic square. In art. (8.) I show how the theory of f ( x ) and ϕ ( x ), where the latter is of an inferior degree to f may be brought under the operation of the rule applicable to two functions of the same degree at the expense of the introduction of a known and very simple factor, which in tact will be a constant power of the leading coefficient in f ( x ). In art. (9.) I give another method of obtaining directly the simplified residues in all cases. In art. (10.) I present the process of successive division under its most general aspect. In arts. (11.) mid (12.) I demonstrate the identity of the algebraical sign of the Bezoutian secondaries with that of the simplified residues, generated by a process corresponding to the development of ϕ x / fx under the form of an improper continued fraction (where the negative sign takes the place of the positive sign which connects the several terms of an ordi­nary continual function). As the simplified residue is obtained by driving out an allotrious factor, the signs of the former will of course be governed by the signs accorded by previous convention to the latter ; the convention made is, that the allotrious factors shall be taken with a sign which renders them always essentially positive when the coefficients of the given functions are real. I close the section with remarking the relation of the syzygetic factors and the residues to the convergents of the continued fraction which expresses ϕ x / fx and of the continued fraction which is formed by reversing the order of the quotients in the first named fraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
博慧发布了新的文献求助10
3秒前
肖肖恩完成签到,获得积分20
3秒前
jagger完成签到,获得积分10
4秒前
伍寒烟发布了新的文献求助10
4秒前
scl关闭了scl文献求助
5秒前
梦灵发布了新的文献求助10
5秒前
领导范儿应助张涛采纳,获得30
6秒前
8秒前
早点毕业发布了新的文献求助10
8秒前
FashionBoy应助Ruisha采纳,获得10
9秒前
山泽通气发布了新的文献求助10
11秒前
12秒前
SciGPT应助杭飞莲采纳,获得10
14秒前
14秒前
xzza完成签到,获得积分10
15秒前
天天快乐应助guojingjing采纳,获得10
16秒前
16秒前
Maxine完成签到 ,获得积分10
17秒前
17秒前
朴素海亦发布了新的文献求助10
18秒前
Maga发布了新的文献求助10
18秒前
ling发布了新的文献求助10
18秒前
Lucas应助诺诺诺诺万采纳,获得10
19秒前
顾惊蛰完成签到,获得积分10
20秒前
20秒前
23秒前
研友_8QyXr8发布了新的文献求助10
23秒前
张涛发布了新的文献求助30
23秒前
Maga完成签到,获得积分10
24秒前
25秒前
27秒前
杭飞莲发布了新的文献求助10
29秒前
路老师完成签到,获得积分10
30秒前
医路潜行完成签到,获得积分10
30秒前
ED应助雪白的面包采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309