马尔可夫过程
计算机科学
贝叶斯概率
贝叶斯推理
隐马尔可夫模型
蒙特卡罗方法
后验概率
颗粒过滤器
混合蒙特卡罗
推论
算法
概率逻辑
吉布斯抽样
先验概率
统计模型
作者
Christian P. Robert,Tobias Rydén,D. M. Titterington
标识
DOI:10.1111/1467-9868.00219
摘要
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.
科研通智能强力驱动
Strongly Powered by AbleSci AI