相互作用体
概率逻辑
质谱法
计算机科学
计算生物学
定量蛋白质组学
蛋白质-蛋白质相互作用
蛋白质组学
化学
数据挖掘
色谱法
生物
人工智能
生物化学
基因
作者
Hyungwon Choi,Brett Larsen,Zhen-Yuan Lin,Ashton Breitkreutz,Dattatreya Mellacheruvu,Damian Fermin,Zhaohui Qin,Mike Tyers,Anne‐Claude Gingras,Alexey I. Nesvizhskii
出处
期刊:Nature Methods
[Springer Nature]
日期:2010-12-05
卷期号:8 (1): 70-73
被引量:726
摘要
A statistical framework for assigning confidence scores for protein-protein interaction data generated via affinity purification–mass spectrometry, called significance analysis of interactome (SAINT) is described. We present 'significance analysis of interactome' (SAINT), a computational tool that assigns confidence scores to protein-protein interaction data generated using affinity purification–mass spectrometry (AP-MS). The method uses label-free quantitative data and constructs separate distributions for true and false interactions to derive the probability of a bona fide protein-protein interaction. We show that SAINT is applicable to data of different scales and protein connectivity and allows transparent analysis of AP-MS data.
科研通智能强力驱动
Strongly Powered by AbleSci AI