清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM

蒙特卡罗方法 拟蒙特卡罗方法 采用蒙地卡罗积分法 统计物理中的蒙特卡罗方法 混合蒙特卡罗 蒙特卡罗分子模拟 动态蒙特卡罗方法 拒收取样 蒙特卡罗算法 马尔科夫蒙特卡洛 计算机科学 算法 数学优化 数学 统计物理学 统计 物理
作者
Wolfgang Jank
出处
期刊:Computational Statistics & Data Analysis [Elsevier]
卷期号:48 (4): 685-701 被引量:38
标识
DOI:10.1016/j.csda.2004.03.019
摘要

In this paper we investigate an efficient implementation of the Monte Carlo EM algorithm based on Quasi-Monte Carlo sampling. The Monte Carlo EM algorithm is a stochastic version of the deterministic EM (Expectation–Maximization) algorithm in which an intractable E-step is replaced by a Monte Carlo approximation. Quasi-Monte Carlo methods produce deterministic sequences of points that can significantly improve the accuracy of Monte Carlo approximations over purely random sampling. One drawback to deterministic quasi-Monte Carlo methods is that it is generally difficult to determine the magnitude of the approximation error. However, in order to implement the Monte Carlo EM algorithm in an automated way, the ability to measure this error is fundamental. Recent developments of randomized quasi-Monte Carlo methods can overcome this drawback. We investigate the implementation of an automated, data-driven Monte Carlo EM algorithm based on randomized quasi-Monte Carlo methods. We apply this algorithm to a geostatistical model of online purchases and find that it can significantly decrease the total simulation effort, thus showing great potential for improving upon the efficiency of the classical Monte Carlo EM algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的冰颜完成签到 ,获得积分10
13秒前
追梦完成签到,获得积分10
21秒前
小小咸鱼完成签到 ,获得积分10
22秒前
陈A完成签到 ,获得积分10
27秒前
秋夜临完成签到,获得积分0
48秒前
跳跃的鹏飞完成签到 ,获得积分0
54秒前
海英完成签到,获得积分10
59秒前
luobote完成签到 ,获得积分10
1分钟前
吕佳完成签到 ,获得积分10
1分钟前
限量版小祸害完成签到 ,获得积分10
1分钟前
qiqi完成签到,获得积分10
1分钟前
1分钟前
我是老大应助Joy采纳,获得10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
早睡早起身体好Q完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
李志全完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xgx984完成签到,获得积分10
1分钟前
共享精神应助keke采纳,获得10
1分钟前
Nene完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
大模型应助Zhuyin采纳,获得10
1分钟前
1分钟前
MoodMeed完成签到,获得积分10
1分钟前
1分钟前
Joy发布了新的文献求助10
1分钟前
keke发布了新的文献求助10
2分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
害羞的裘完成签到 ,获得积分10
2分钟前
此时此刻完成签到 ,获得积分10
2分钟前
SciGPT应助Joy采纳,获得10
2分钟前
2分钟前
mengqing发布了新的文献求助10
2分钟前
2分钟前
coding完成签到,获得积分10
2分钟前
Lucas应助积极香菜采纳,获得10
2分钟前
玺青一生完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310