Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM

蒙特卡罗方法 拟蒙特卡罗方法 采用蒙地卡罗积分法 统计物理中的蒙特卡罗方法 混合蒙特卡罗 蒙特卡罗分子模拟 动态蒙特卡罗方法 拒收取样 蒙特卡罗算法 马尔科夫蒙特卡洛 计算机科学 算法 数学优化 数学 统计物理学 统计 物理
作者
Wolfgang Jank
出处
期刊:Computational Statistics & Data Analysis [Elsevier]
卷期号:48 (4): 685-701 被引量:38
标识
DOI:10.1016/j.csda.2004.03.019
摘要

In this paper we investigate an efficient implementation of the Monte Carlo EM algorithm based on Quasi-Monte Carlo sampling. The Monte Carlo EM algorithm is a stochastic version of the deterministic EM (Expectation–Maximization) algorithm in which an intractable E-step is replaced by a Monte Carlo approximation. Quasi-Monte Carlo methods produce deterministic sequences of points that can significantly improve the accuracy of Monte Carlo approximations over purely random sampling. One drawback to deterministic quasi-Monte Carlo methods is that it is generally difficult to determine the magnitude of the approximation error. However, in order to implement the Monte Carlo EM algorithm in an automated way, the ability to measure this error is fundamental. Recent developments of randomized quasi-Monte Carlo methods can overcome this drawback. We investigate the implementation of an automated, data-driven Monte Carlo EM algorithm based on randomized quasi-Monte Carlo methods. We apply this algorithm to a geostatistical model of online purchases and find that it can significantly decrease the total simulation effort, thus showing great potential for improving upon the efficiency of the classical Monte Carlo EM algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分10
1秒前
英俊的铭应助zhzhzh采纳,获得10
1秒前
幸福烤鸡发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
李健应助务实的机器猫采纳,获得10
3秒前
3秒前
3秒前
3秒前
哈皮发布了新的文献求助10
3秒前
4秒前
刘麦子完成签到,获得积分10
4秒前
xiongyh10发布了新的文献求助10
4秒前
4秒前
t东流水完成签到,获得积分10
5秒前
5秒前
5秒前
peng完成签到,获得积分10
5秒前
5秒前
丘比特应助呆萌冷风采纳,获得10
5秒前
好运设计完成签到,获得积分10
6秒前
李健应助aldeheby采纳,获得10
6秒前
领导范儿应助xixi采纳,获得10
6秒前
Chunlan发布了新的文献求助10
7秒前
nisun完成签到,获得积分10
7秒前
7秒前
粗犷的向珊完成签到 ,获得积分10
7秒前
快乐周周关注了科研通微信公众号
7秒前
7秒前
7秒前
Aurinse发布了新的文献求助10
8秒前
8秒前
惔惔惔发布了新的文献求助10
8秒前
周传强完成签到,获得积分10
8秒前
小虫完成签到,获得积分10
9秒前
9秒前
9秒前
蒸汽秋葵完成签到 ,获得积分10
9秒前
宇月幸成发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894