Convolutional MKL Based Multimodal Emotion Recognition and Sentiment Analysis

计算机科学 情绪分析 卷积神经网络 步伐 互联网 深度学习 人工智能 分类器(UML) 可穿戴计算机 多模式学习 多媒体 万维网 大地测量学 嵌入式系统 地理
作者
Soujanya Poria,Iti Chaturvedi,Zhaoxia Wang,Amir Hussain
标识
DOI:10.1109/icdm.2016.0055
摘要

Technology has enabled anyone with an Internet connection to easily create and share their ideas, opinions and content with millions of other people around the world. Much of the content being posted and consumed online is multimodal. With billions of phones, tablets and PCs shipping today with built-in cameras and a host of new video-equipped wearables like Google Glass on the horizon, the amount of video on the Internet will only continue to increase. It has become increasingly difficult for researchers to keep up with this deluge of multimodal content, let alone organize or make sense of it. Mining useful knowledge from video is a critical need that will grow exponentially, in pace with the global growth of content. This is particularly important in sentiment analysis, as both service and product reviews are gradually shifting from unimodal to multimodal. We present a novel method to extract features from visual and textual modalities using deep convolutional neural networks. By feeding such features to a multiple kernel learning classifier, we significantly outperform the state of the art of multimodal emotion recognition and sentiment analysis on different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芋泥卷的芋泥完成签到,获得积分10
2秒前
Orange应助panfan采纳,获得10
3秒前
Gavin啥也不会完成签到,获得积分10
3秒前
我是老大应助高大冬萱采纳,获得10
5秒前
5秒前
6秒前
lwh完成签到,获得积分20
6秒前
7秒前
7秒前
JamesPei应助麋鹿采纳,获得10
7秒前
wxd完成签到,获得积分10
9秒前
一步之遥完成签到,获得积分10
9秒前
香蕉觅云应助方董采纳,获得10
11秒前
小二郎应助lwh采纳,获得10
11秒前
cc发布了新的文献求助30
13秒前
13秒前
13秒前
14秒前
坤坤蹦蹦跳跳完成签到,获得积分10
16秒前
我是老大应助科研通管家采纳,获得30
16秒前
852应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
我自随风发布了新的文献求助10
18秒前
18秒前
Owen应助别皱眉采纳,获得10
19秒前
19秒前
自行输入昵称完成签到 ,获得积分10
19秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112