Rapid characterisation of carbonate phases in hyperspectral reflectance spectra acquired from drill core material has important implications for mineral exploration and resource modelling. Major infrared active features of carbonates lie in the thermal region around 6500 nm, 11 300 nm and 14 000 nm, with the latter two features being most useful for differentiating mineral species. A scatter diagram of the wavelength of the 14 000 nm feature vs that of the 11 300 nm feature, powerfully differentiates carbonates. Although the wavelength of the 11 300 nm peak is easily measured, the 14 000 nm trough and peak are commonly weak and their wavelengths can confidently be used only after filtering the spectra, e.g. selecting only those with the trough and peak separated by 175–230 nm, typical of common carbonates. The method is demonstrated with drillhole 120R from the Rosebery polymetallic VHMS deposit in western Tasmania, which has been scanned with the HyLogger-3 system. A 14 000–11 300 plot shows a high degree of clustering of the drillhole 120R data close to the library spectra of calcite, dolomite, Fe-dolomite, ankerite, kutnohorite, rhodochrosite, Fe-rhodochrosite and siderite. The interpreted compositions of the carbonate spectral populations strongly correlate with the chemical populations of 144 analysed carbonates and provide a highly resolved spatial framework for interpreting carbonate alteration.