Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles

嫁接 纳米颗粒 单体 分散性 纳米技术 聚合物 材料科学 化学工程 色散(光学) 混溶性 高分子化学 复合材料 物理 光学 工程类
作者
Makoto Asai,Dan Zhao,Sanat K. Kumar
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (7): 7028-7035 被引量:68
标识
DOI:10.1021/acsnano.7b02657
摘要

It is now well-accepted that controlling the spatial dispersion of nanoparticles (NPs), which can be achieved by grafting them with polymers of different chain lengths and grafting densities, is central to optimizing the thermomechanical properties of the resulting polymer nanocomposites. In general, there are two methods for creating such polymer-grafted NPs: "grafting to" and "grafting from". The conventional wisdom is that the "grafting from" mechanism, where monomer-sized initiator/functional groups are attached to the surface followed by growing the chains, allows for higher polymer grafting densities and hence a more uniform polymer coverage of the NP surface. Here, we perform calculations and instead show that the "grafting to" strategy surprisingly leads to a more uniform polymer coverage of the NP surface at a given grafting density since the brush is formed while respecting the excluded volume constraints of the previously grafted chains. This conclusion is especially clear in the limit of low-to-moderate grafting density. Thus, at a given grafting density, the "grafting to" mechanism leads to an enhanced miscibility of the NPs in the matrix (which has the same chemistry as the grafts) and lower propensity to create self-assembled structures. Another important factor is that the dispersity in the number of grafted chains on the NPs is also smaller in the case of "grafting to" systems, thus leading to better defined materials. These two conclusions imply that the "grafting to" mechanism may provide better control over the NP dispersion state and hence the thermomechanical properties of polymer nanocomposites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助复杂惜霜采纳,获得10
刚刚
刚刚
zzzxiangyi完成签到,获得积分10
刚刚
Twonej应助敬之采纳,获得20
刚刚
轻松晓曼发布了新的文献求助10
1秒前
jinhuanghuiyu完成签到,获得积分10
1秒前
852应助金锐采纳,获得30
1秒前
科研通AI6应助Hey采纳,获得10
1秒前
小蘑菇应助cccc采纳,获得10
1秒前
mzp完成签到,获得积分10
1秒前
承乐发布了新的文献求助10
2秒前
2秒前
liliya发布了新的文献求助10
2秒前
kkkkkkkk发布了新的文献求助30
2秒前
555发布了新的文献求助10
2秒前
要减肥的小馒头完成签到 ,获得积分10
3秒前
GI完成签到,获得积分10
3秒前
song发布了新的文献求助10
4秒前
AHA发布了新的文献求助20
4秒前
5秒前
5秒前
充电宝应助小王采纳,获得10
6秒前
6秒前
SciGPT应助mjtsurgery采纳,获得10
6秒前
好学发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
科研通AI6应助路人甲采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
韦老虎完成签到,获得积分10
7秒前
柯一凡发布了新的文献求助10
8秒前
8秒前
Owen应助耍酷曼青采纳,获得10
8秒前
11完成签到 ,获得积分10
8秒前
bjyx发布了新的文献求助10
9秒前
暴躁的夏烟应助123采纳,获得10
9秒前
悦耳的萃发布了新的文献求助10
10秒前
FiFi完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603