Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles

嫁接 纳米颗粒 单体 分散性 纳米技术 聚合物 材料科学 化学工程 色散(光学) 混溶性 高分子化学 复合材料 物理 光学 工程类
作者
Makoto Asai,Dan Zhao,Sanat K. Kumar
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (7): 7028-7035 被引量:68
标识
DOI:10.1021/acsnano.7b02657
摘要

It is now well-accepted that controlling the spatial dispersion of nanoparticles (NPs), which can be achieved by grafting them with polymers of different chain lengths and grafting densities, is central to optimizing the thermomechanical properties of the resulting polymer nanocomposites. In general, there are two methods for creating such polymer-grafted NPs: "grafting to" and "grafting from". The conventional wisdom is that the "grafting from" mechanism, where monomer-sized initiator/functional groups are attached to the surface followed by growing the chains, allows for higher polymer grafting densities and hence a more uniform polymer coverage of the NP surface. Here, we perform calculations and instead show that the "grafting to" strategy surprisingly leads to a more uniform polymer coverage of the NP surface at a given grafting density since the brush is formed while respecting the excluded volume constraints of the previously grafted chains. This conclusion is especially clear in the limit of low-to-moderate grafting density. Thus, at a given grafting density, the "grafting to" mechanism leads to an enhanced miscibility of the NPs in the matrix (which has the same chemistry as the grafts) and lower propensity to create self-assembled structures. Another important factor is that the dispersity in the number of grafted chains on the NPs is also smaller in the case of "grafting to" systems, thus leading to better defined materials. These two conclusions imply that the "grafting to" mechanism may provide better control over the NP dispersion state and hence the thermomechanical properties of polymer nanocomposites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乳酸菌发布了新的文献求助10
刚刚
WW完成签到,获得积分10
刚刚
dou完成签到,获得积分10
刚刚
轻风发布了新的文献求助10
刚刚
烟花应助xx采纳,获得10
1秒前
1秒前
舒心谷雪完成签到 ,获得积分10
2秒前
orixero应助pengrenfu采纳,获得10
2秒前
科研通AI2S应助南风采纳,获得10
2秒前
有魅力曼易完成签到,获得积分10
3秒前
董阳关注了科研通微信公众号
3秒前
3秒前
MAR完成签到,获得积分10
3秒前
傲娇早晨完成签到,获得积分10
3秒前
心随风飞完成签到,获得积分10
4秒前
4秒前
细心的小刺猬完成签到,获得积分10
5秒前
chen发布了新的文献求助10
5秒前
稀饭完成签到,获得积分10
5秒前
5秒前
5476发布了新的文献求助10
5秒前
5秒前
没有人歌颂完成签到,获得积分10
6秒前
mong完成签到,获得积分10
6秒前
菠萝吹宝完成签到 ,获得积分10
7秒前
滴滴完成签到,获得积分10
7秒前
adovj完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
AprilLeung完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090