Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles

嫁接 纳米颗粒 单体 分散性 纳米技术 聚合物 材料科学 化学工程 色散(光学) 混溶性 高分子化学 复合材料 物理 光学 工程类
作者
Makoto Asai,Dan Zhao,Sanat K. Kumar
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (7): 7028-7035 被引量:68
标识
DOI:10.1021/acsnano.7b02657
摘要

It is now well-accepted that controlling the spatial dispersion of nanoparticles (NPs), which can be achieved by grafting them with polymers of different chain lengths and grafting densities, is central to optimizing the thermomechanical properties of the resulting polymer nanocomposites. In general, there are two methods for creating such polymer-grafted NPs: "grafting to" and "grafting from". The conventional wisdom is that the "grafting from" mechanism, where monomer-sized initiator/functional groups are attached to the surface followed by growing the chains, allows for higher polymer grafting densities and hence a more uniform polymer coverage of the NP surface. Here, we perform calculations and instead show that the "grafting to" strategy surprisingly leads to a more uniform polymer coverage of the NP surface at a given grafting density since the brush is formed while respecting the excluded volume constraints of the previously grafted chains. This conclusion is especially clear in the limit of low-to-moderate grafting density. Thus, at a given grafting density, the "grafting to" mechanism leads to an enhanced miscibility of the NPs in the matrix (which has the same chemistry as the grafts) and lower propensity to create self-assembled structures. Another important factor is that the dispersity in the number of grafted chains on the NPs is also smaller in the case of "grafting to" systems, thus leading to better defined materials. These two conclusions imply that the "grafting to" mechanism may provide better control over the NP dispersion state and hence the thermomechanical properties of polymer nanocomposites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温芳奇发布了新的文献求助10
2秒前
3秒前
4秒前
沉静水儿完成签到,获得积分10
4秒前
liuxianglin2006完成签到,获得积分10
4秒前
思源应助ajjdnd采纳,获得10
5秒前
ssu完成签到,获得积分10
6秒前
6秒前
科研通AI6应助hhh采纳,获得10
6秒前
耿昊发布了新的文献求助10
8秒前
生动安波应助白嫖论文采纳,获得10
8秒前
王佳亮完成签到,获得积分10
8秒前
充电宝应助MCY采纳,获得10
8秒前
beiyoumilu完成签到,获得积分10
10秒前
汉堡包应助QQ采纳,获得10
10秒前
10秒前
yuC驳回了wanci应助
12秒前
12秒前
12秒前
杨胖胖完成签到,获得积分10
13秒前
脑洞疼应助英俊的白安采纳,获得10
14秒前
雨相所至发布了新的文献求助20
15秒前
科研通AI6应助耿昊采纳,获得10
15秒前
古重迷离完成签到 ,获得积分10
15秒前
15秒前
呵呵呵完成签到,获得积分10
16秒前
愉快的犀牛完成签到 ,获得积分10
17秒前
growl发布了新的文献求助10
17秒前
18秒前
18秒前
愉快若烟发布了新的文献求助10
18秒前
整齐的泥猴桃完成签到 ,获得积分10
19秒前
19秒前
21秒前
科研通AI6应助SY采纳,获得10
21秒前
秀丽笑容完成签到,获得积分10
21秒前
22秒前
zz发布了新的文献求助10
22秒前
Hello应助鼻揩了转去采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995