Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles

嫁接 纳米颗粒 单体 分散性 纳米技术 聚合物 材料科学 化学工程 色散(光学) 混溶性 高分子化学 复合材料 物理 光学 工程类
作者
Makoto Asai,Dan Zhao,Sanat K. Kumar
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (7): 7028-7035 被引量:68
标识
DOI:10.1021/acsnano.7b02657
摘要

It is now well-accepted that controlling the spatial dispersion of nanoparticles (NPs), which can be achieved by grafting them with polymers of different chain lengths and grafting densities, is central to optimizing the thermomechanical properties of the resulting polymer nanocomposites. In general, there are two methods for creating such polymer-grafted NPs: "grafting to" and "grafting from". The conventional wisdom is that the "grafting from" mechanism, where monomer-sized initiator/functional groups are attached to the surface followed by growing the chains, allows for higher polymer grafting densities and hence a more uniform polymer coverage of the NP surface. Here, we perform calculations and instead show that the "grafting to" strategy surprisingly leads to a more uniform polymer coverage of the NP surface at a given grafting density since the brush is formed while respecting the excluded volume constraints of the previously grafted chains. This conclusion is especially clear in the limit of low-to-moderate grafting density. Thus, at a given grafting density, the "grafting to" mechanism leads to an enhanced miscibility of the NPs in the matrix (which has the same chemistry as the grafts) and lower propensity to create self-assembled structures. Another important factor is that the dispersity in the number of grafted chains on the NPs is also smaller in the case of "grafting to" systems, thus leading to better defined materials. These two conclusions imply that the "grafting to" mechanism may provide better control over the NP dispersion state and hence the thermomechanical properties of polymer nanocomposites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sens发布了新的文献求助10
刚刚
DamonChen完成签到,获得积分10
刚刚
NexusExplorer应助Lawenced采纳,获得10
刚刚
刚刚
WuLujie发布了新的文献求助10
刚刚
不做Aspirin完成签到 ,获得积分10
刚刚
mylove应助morry5007采纳,获得10
1秒前
隐形曼青应助Aurora采纳,获得10
1秒前
从容问雁发布了新的文献求助10
1秒前
1秒前
woshiwuziq完成签到 ,获得积分10
1秒前
SciGPT应助健忘的自行车采纳,获得20
2秒前
QWE发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
我是老大应助白苹果采纳,获得10
4秒前
Jackxu发布了新的文献求助10
4秒前
4秒前
Linda发布了新的文献求助30
4秒前
liuttinn完成签到,获得积分10
4秒前
所所应助刘丰铭采纳,获得10
5秒前
5秒前
5秒前
5秒前
能干冰露发布了新的文献求助10
5秒前
脑洞疼应助王则华采纳,获得10
5秒前
Leon发布了新的文献求助20
7秒前
8秒前
8秒前
闫小天天完成签到,获得积分10
9秒前
ningmeng发布了新的文献求助10
9秒前
9秒前
科研通AI6应助白辉采纳,获得10
9秒前
承乐应助波风水门pxf采纳,获得10
9秒前
9秒前
何文完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助Jackxu采纳,获得10
10秒前
共享精神应助Jinyang采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836