Role of Grafting Mechanism on the Polymer Coverage and Self-Assembly of Hairy Nanoparticles

嫁接 纳米颗粒 单体 分散性 纳米技术 聚合物 材料科学 化学工程 色散(光学) 混溶性 高分子化学 复合材料 物理 光学 工程类
作者
Makoto Asai,Dan Zhao,Sanat K. Kumar
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (7): 7028-7035 被引量:68
标识
DOI:10.1021/acsnano.7b02657
摘要

It is now well-accepted that controlling the spatial dispersion of nanoparticles (NPs), which can be achieved by grafting them with polymers of different chain lengths and grafting densities, is central to optimizing the thermomechanical properties of the resulting polymer nanocomposites. In general, there are two methods for creating such polymer-grafted NPs: "grafting to" and "grafting from". The conventional wisdom is that the "grafting from" mechanism, where monomer-sized initiator/functional groups are attached to the surface followed by growing the chains, allows for higher polymer grafting densities and hence a more uniform polymer coverage of the NP surface. Here, we perform calculations and instead show that the "grafting to" strategy surprisingly leads to a more uniform polymer coverage of the NP surface at a given grafting density since the brush is formed while respecting the excluded volume constraints of the previously grafted chains. This conclusion is especially clear in the limit of low-to-moderate grafting density. Thus, at a given grafting density, the "grafting to" mechanism leads to an enhanced miscibility of the NPs in the matrix (which has the same chemistry as the grafts) and lower propensity to create self-assembled structures. Another important factor is that the dispersity in the number of grafted chains on the NPs is also smaller in the case of "grafting to" systems, thus leading to better defined materials. These two conclusions imply that the "grafting to" mechanism may provide better control over the NP dispersion state and hence the thermomechanical properties of polymer nanocomposites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cloudy关注了科研通微信公众号
刚刚
1秒前
2秒前
我是老大应助轻松苠采纳,获得10
2秒前
liuliu完成签到 ,获得积分10
2秒前
英姑应助lhr采纳,获得10
3秒前
3秒前
kkc发布了新的文献求助30
4秒前
Tina完成签到,获得积分10
4秒前
机灵班应助xcz采纳,获得10
6秒前
桃子汽水完成签到,获得积分10
6秒前
6秒前
小透明发布了新的文献求助100
7秒前
甜心小鱼完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
11秒前
嘀嘀嘀发布了新的文献求助20
11秒前
12秒前
12秒前
西瓜宝宝完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
高泽乐完成签到,获得积分10
14秒前
15秒前
小白完成签到,获得积分10
15秒前
Miki完成签到,获得积分10
16秒前
16秒前
wy.he应助XM采纳,获得20
16秒前
waoller1发布了新的文献求助10
17秒前
waoller1发布了新的文献求助10
17秒前
waoller1发布了新的文献求助10
17秒前
waoller1发布了新的文献求助10
17秒前
17秒前
闫闫完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297579
求助须知:如何正确求助?哪些是违规求助? 4446407
关于积分的说明 13839369
捐赠科研通 4331573
什么是DOI,文献DOI怎么找? 2377767
邀请新用户注册赠送积分活动 1373035
关于科研通互助平台的介绍 1338563