Singly and Doubly Occupied Higher Quantum States in Nanocrystals

纳米晶 超顺磁性 抗磁性 量子点 电子 凝聚态物理 未成对电子 材料科学 化学 纳米技术 物理 磁化 磁场 量子力学
作者
Ju‐Yeon Jeong,Bitna Yoon,Young-Wan Kwon,Dongsun Choi,Kwang Seob Jeong
出处
期刊:Nano Letters [American Chemical Society]
卷期号:17 (2): 1187-1193 被引量:34
标识
DOI:10.1021/acs.nanolett.6b04915
摘要

Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
水晶李完成签到 ,获得积分10
5秒前
心想事成完成签到 ,获得积分10
5秒前
11秒前
e麓绝尘完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
18秒前
fantexi113发布了新的文献求助10
18秒前
张先生完成签到 ,获得积分10
20秒前
Lemenchichi完成签到,获得积分10
20秒前
LT完成签到 ,获得积分0
22秒前
22秒前
刘刘宇航完成签到,获得积分10
22秒前
fa完成签到,获得积分10
25秒前
肖战战完成签到 ,获得积分10
25秒前
雍州小铁匠完成签到 ,获得积分10
27秒前
无为完成签到 ,获得积分10
29秒前
王伟轩完成签到,获得积分10
31秒前
科研通AI2S应助雪山飞龙采纳,获得30
37秒前
研友_8y2G0L完成签到,获得积分10
39秒前
震动的沉鱼完成签到 ,获得积分10
39秒前
整齐唯雪发布了新的文献求助10
41秒前
光夜发布了新的文献求助10
41秒前
44秒前
整齐唯雪完成签到,获得积分10
46秒前
47秒前
清秀尔竹完成签到 ,获得积分10
48秒前
狼来了aas完成签到,获得积分10
50秒前
sbw完成签到,获得积分10
51秒前
舒适的藏花完成签到 ,获得积分10
51秒前
忒寒碜完成签到,获得积分10
52秒前
罗鸯鸯发布了新的文献求助10
54秒前
充电宝应助科研通管家采纳,获得10
54秒前
54秒前
文二目分完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
56秒前
陈M雯完成签到 ,获得积分10
56秒前
Hello应助欢喜的跳跳糖采纳,获得10
1分钟前
1分钟前
fantexi113发布了新的文献求助10
1分钟前
是是是WQ完成签到 ,获得积分0
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292