亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_ZragOn发布了新的文献求助10
8秒前
浮游应助why采纳,获得10
13秒前
浮游应助Wei采纳,获得10
53秒前
zz完成签到 ,获得积分10
54秒前
1分钟前
lxfthu发布了新的文献求助10
1分钟前
why发布了新的文献求助10
2分钟前
Geist完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
冷傲迎梅完成签到 ,获得积分10
2分钟前
hzc关闭了hzc文献求助
2分钟前
why完成签到,获得积分10
3分钟前
DChen完成签到,获得积分10
3分钟前
hzc发布了新的文献求助10
3分钟前
踏实的无敌完成签到,获得积分10
3分钟前
甜瓜123完成签到,获得积分10
3分钟前
南极的企鹅365完成签到 ,获得积分10
4分钟前
小宋同学不能怂完成签到 ,获得积分10
4分钟前
hzc发布了新的文献求助10
4分钟前
小燕子完成签到 ,获得积分10
4分钟前
上官若男应助hzc采纳,获得10
4分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
5分钟前
科研通AI6应助尊敬的芷卉采纳,获得20
5分钟前
5分钟前
情怀应助尊敬的芷卉采纳,获得10
5分钟前
5分钟前
英姑应助尊敬的芷卉采纳,获得20
5分钟前
5分钟前
情怀应助尊敬的芷卉采纳,获得10
5分钟前
华仔应助尊敬的芷卉采纳,获得20
5分钟前
上官若男应助尊敬的芷卉采纳,获得20
5分钟前
浮游应助VDC采纳,获得10
6分钟前
6分钟前
高级牛马完成签到 ,获得积分10
7分钟前
于yu完成签到 ,获得积分10
7分钟前
LIN完成签到,获得积分10
8分钟前
8分钟前
8分钟前
lxfthu发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470310
求助须知:如何正确求助?哪些是违规求助? 4573151
关于积分的说明 14338158
捐赠科研通 4500182
什么是DOI,文献DOI怎么找? 2465615
邀请新用户注册赠送积分活动 1453965
关于科研通互助平台的介绍 1428602