亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颢懿完成签到 ,获得积分10
5秒前
豪宝好饱完成签到 ,获得积分10
6秒前
10秒前
12秒前
紫熊发布了新的文献求助10
15秒前
ANNNNN发布了新的文献求助10
17秒前
Hung发布了新的文献求助10
18秒前
my应助讨厌化学采纳,获得30
25秒前
叫我学弟完成签到 ,获得积分10
26秒前
30秒前
32秒前
星辰发布了新的文献求助10
36秒前
ccm应助吼吼哈嘿采纳,获得10
38秒前
Swater完成签到 ,获得积分10
39秒前
39秒前
40秒前
自由烤鸡完成签到 ,获得积分10
42秒前
123完成签到,获得积分10
43秒前
陈词丶发布了新的文献求助10
43秒前
45秒前
27小天使发布了新的文献求助30
45秒前
土豪的洋葱完成签到,获得积分10
50秒前
52秒前
紫熊完成签到,获得积分10
56秒前
搜集达人应助kakak采纳,获得10
56秒前
现代听枫发布了新的文献求助10
56秒前
思源应助星辰采纳,获得10
58秒前
Hung完成签到,获得积分10
59秒前
1分钟前
繁荣的凡完成签到 ,获得积分10
1分钟前
1分钟前
盘羊发布了新的文献求助10
1分钟前
朔毅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
淡然的妙芙应助陈词丶采纳,获得10
1分钟前
山川日月完成签到,获得积分10
1分钟前
张传茁发布了新的文献求助30
1分钟前
Murphy完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252