亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zachary009完成签到 ,获得积分10
1秒前
Jasper应助可爱的坤采纳,获得50
1秒前
2秒前
爱撒娇的砖头完成签到,获得积分10
2秒前
linuo完成签到,获得积分10
3秒前
一见喜发布了新的文献求助10
3秒前
完美世界应助闹闹采纳,获得10
4秒前
古铜完成签到 ,获得积分10
5秒前
Tumumu完成签到,获得积分0
6秒前
lxl发布了新的文献求助10
7秒前
闹闹完成签到,获得积分20
10秒前
七色光发布了新的文献求助10
13秒前
细心的紫菱完成签到,获得积分10
14秒前
琅琊为刃发布了新的文献求助10
16秒前
16秒前
桐桐应助lihailong采纳,获得10
18秒前
Jasper应助努力学习的小方采纳,获得10
18秒前
Jayzie完成签到 ,获得积分10
24秒前
25秒前
lihailong发布了新的文献求助10
29秒前
30秒前
30秒前
HXY完成签到,获得积分10
30秒前
mdmdd完成签到,获得积分10
32秒前
37秒前
Jessica完成签到,获得积分10
37秒前
43秒前
与光发布了新的文献求助10
47秒前
深情安青应助吃吃菜菜吧采纳,获得10
48秒前
zqq完成签到,获得积分0
1分钟前
小葵发布了新的文献求助30
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
heartyi完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
lxl发布了新的文献求助10
1分钟前
qiaorankongling完成签到 ,获得积分10
2分钟前
阉太狼完成签到,获得积分10
2分钟前
汉堡包应助lll采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799