Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 情绪分类 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:268
标识
DOI:10.1109/taffc.2017.2660485
摘要

Recognition of a human's continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual's emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun完成签到,获得积分10
1秒前
778完成签到 ,获得积分10
3秒前
scoca发布了新的文献求助10
4秒前
桐桐应助hanxuepenyun采纳,获得10
4秒前
阿飞完成签到,获得积分10
4秒前
5秒前
5秒前
JackMotor应助PP采纳,获得20
5秒前
6秒前
6秒前
我是老大应助子车雁开采纳,获得10
8秒前
sun关闭了sun文献求助
9秒前
易拉罐完成签到,获得积分10
10秒前
11秒前
大慧慧完成签到,获得积分20
11秒前
YY完成签到,获得积分10
11秒前
任性唇膏发布了新的文献求助10
12秒前
14秒前
yzzzz完成签到,获得积分10
14秒前
17秒前
大模型应助China采纳,获得10
18秒前
Ava应助赵三岁采纳,获得30
20秒前
YNC发布了新的文献求助10
20秒前
20秒前
21秒前
闻歌发布了新的文献求助10
21秒前
Doki完成签到,获得积分20
21秒前
任性唇膏完成签到,获得积分10
21秒前
23秒前
23秒前
Mengjie完成签到,获得积分10
24秒前
25秒前
25秒前
ML完成签到,获得积分10
25秒前
丘比特应助坚强莺采纳,获得10
25秒前
一一发布了新的文献求助10
25秒前
时尚浩轩完成签到 ,获得积分10
25秒前
李健的小迷弟应助闻歌采纳,获得10
25秒前
China完成签到,获得积分10
26秒前
赵hb完成签到,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210