Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaodiandian完成签到,获得积分10
1秒前
1秒前
ShicongNiu发布了新的文献求助10
2秒前
Ge发布了新的文献求助10
2秒前
Orange应助w1kend采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
无极微光应助橘子采纳,获得20
5秒前
苛帅发布了新的文献求助10
6秒前
7秒前
共享精神应助gan采纳,获得10
7秒前
8秒前
大头娃娃发布了新的文献求助10
8秒前
lai发布了新的文献求助10
8秒前
9秒前
汉堡包应助guo采纳,获得10
11秒前
冰激凌发布了新的文献求助10
12秒前
13秒前
希望天下0贩的0应助Ge采纳,获得10
13秒前
李健应助lai采纳,获得10
14秒前
骆西西发布了新的文献求助10
15秒前
banban完成签到,获得积分10
15秒前
科研通AI2S应助大可采纳,获得10
16秒前
16秒前
脑洞疼应助w1kend采纳,获得10
17秒前
在水一方应助瓜瓜瓜采纳,获得20
18秒前
香蕉觅云应助小巧的柚子采纳,获得10
18秒前
29发布了新的文献求助10
18秒前
liu完成签到,获得积分10
19秒前
锦沫完成签到,获得积分10
19秒前
111发布了新的文献求助10
19秒前
爱笑的紫霜完成签到 ,获得积分10
20秒前
CipherSage应助zhangyu采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
李虹发布了新的文献求助10
23秒前
冷空气发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779