Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 情绪分类 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:268
标识
DOI:10.1109/taffc.2017.2660485
摘要

Recognition of a human's continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual's emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就梦松完成签到,获得积分10
刚刚
byyyy完成签到,获得积分10
刚刚
温暖的俊驰完成签到,获得积分10
1秒前
Isabel完成签到,获得积分10
1秒前
yx应助陈强采纳,获得30
2秒前
sokach发布了新的文献求助10
4秒前
缓慢荔枝发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
天御雪完成签到,获得积分10
5秒前
gen关闭了gen文献求助
5秒前
5秒前
科研通AI5应助oldlee采纳,获得10
6秒前
6秒前
MADKAI发布了新的文献求助10
6秒前
哈哈悦完成签到,获得积分10
6秒前
赘婿应助duoduozs采纳,获得10
6秒前
kai完成签到,获得积分10
7秒前
7秒前
情怀应助xhy采纳,获得10
7秒前
整齐的灭绝完成签到 ,获得积分10
8秒前
充电宝应助船舵采纳,获得10
8秒前
lqphysics完成签到,获得积分10
8秒前
8秒前
小小完成签到 ,获得积分10
9秒前
320me666完成签到,获得积分10
10秒前
10秒前
velpro发布了新的文献求助10
11秒前
科研通AI5应助masu采纳,获得10
11秒前
小狸跟你拼啦完成签到,获得积分10
11秒前
寂寞的灵发布了新的文献求助10
11秒前
12秒前
honey完成签到,获得积分10
12秒前
白宝宝北北白应助eee采纳,获得10
12秒前
gcc应助HZW采纳,获得20
13秒前
13秒前
完美世界应助Hu111采纳,获得10
14秒前
khaosyi完成签到 ,获得积分10
15秒前
哇哈哈完成签到,获得积分10
16秒前
16秒前
buno应助啦啦采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672