Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静盼易发布了新的文献求助10
2秒前
3秒前
归尘应助MoonByMoon采纳,获得10
4秒前
冬柳发布了新的文献求助10
5秒前
6秒前
6秒前
李爱国应助llmm采纳,获得10
7秒前
小蘑菇应助旺仔采纳,获得10
7秒前
7秒前
脑洞疼应助lili采纳,获得10
7秒前
沉静盼易完成签到,获得积分10
7秒前
能干储发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
10秒前
Georges-09发布了新的文献求助10
10秒前
柚子茶发布了新的文献求助10
11秒前
12秒前
sy193625发布了新的文献求助10
12秒前
13秒前
科研通AI6应助搞怪的大侠采纳,获得10
13秒前
赘婿应助LG采纳,获得20
14秒前
高翔发布了新的文献求助10
14秒前
14秒前
wuhan完成签到,获得积分10
15秒前
Lee发布了新的文献求助10
16秒前
16秒前
小吴同学完成签到,获得积分20
18秒前
还得学啊完成签到,获得积分10
18秒前
个性的荆应助one采纳,获得10
18秒前
19秒前
19秒前
肖肖完成签到,获得积分10
20秒前
JamesPei应助photodetectors采纳,获得10
20秒前
21秒前
22秒前
23秒前
Lee完成签到,获得积分10
23秒前
英俊的铭应助sy193625采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901