Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁jj发布了新的文献求助10
1秒前
cassie完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
7秒前
朝阳满意发布了新的文献求助10
7秒前
知愈发布了新的文献求助10
8秒前
danggui完成签到,获得积分10
10秒前
幽默的煎饼发布了新的文献求助100
10秒前
Diane发布了新的文献求助10
10秒前
小巧寻桃发布了新的文献求助10
11秒前
dream完成签到 ,获得积分10
11秒前
加油发布了新的文献求助10
11秒前
脑洞疼应助冷酷莫言采纳,获得10
11秒前
13秒前
16秒前
海洋完成签到,获得积分10
16秒前
团子完成签到,获得积分10
17秒前
Lucas应助十一采纳,获得10
17秒前
zhongyinanke发布了新的文献求助50
18秒前
lele发布了新的文献求助10
18秒前
华仔应助小巧寻桃采纳,获得10
18秒前
hhh完成签到,获得积分10
19秒前
南极以南完成签到,获得积分10
19秒前
酷炫的幻丝完成签到 ,获得积分10
21秒前
22秒前
zxh发布了新的文献求助10
26秒前
26秒前
受伤的无心完成签到 ,获得积分10
27秒前
平淡从霜发布了新的文献求助10
27秒前
31秒前
zxh完成签到,获得积分10
34秒前
34秒前
1111111发布了新的文献求助10
36秒前
淘气乌龙茶完成签到 ,获得积分10
36秒前
SciGPT应助危机的阁采纳,获得10
38秒前
生动的若之完成签到 ,获得积分10
38秒前
冷酷莫言发布了新的文献求助10
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055