Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:329
标识
DOI:10.1109/taffc.2017.2660485
摘要

<p>Recognition of a human&#39;s continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual&#39;s emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jokerc完成签到,获得积分10
1秒前
YSY发布了新的文献求助10
1秒前
恨安完成签到,获得积分10
1秒前
1秒前
1秒前
路宝发布了新的文献求助10
1秒前
bewh完成签到,获得积分10
2秒前
2秒前
嘻嘻发布了新的文献求助10
2秒前
天才罗完成签到,获得积分10
2秒前
滕遥发布了新的文献求助150
2秒前
2秒前
Congcong给Congcong的求助进行了留言
2秒前
Ting完成签到 ,获得积分10
3秒前
3秒前
徐恺完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Jasper应助欢呼豆芽采纳,获得10
4秒前
5秒前
所所应助善良的ltl采纳,获得10
6秒前
shenerqing发布了新的文献求助10
6秒前
小杜发布了新的文献求助10
6秒前
6秒前
xueshu发布了新的文献求助10
6秒前
风住的街完成签到,获得积分10
6秒前
难过板栗发布了新的文献求助10
6秒前
666发布了新的文献求助10
6秒前
7秒前
薇子完成签到,获得积分10
7秒前
7秒前
7秒前
情怀应助能干耳机采纳,获得10
8秒前
CodeCraft应助wyiii采纳,获得10
8秒前
dd完成签到,获得积分10
8秒前
晏之傲者发布了新的文献求助30
8秒前
8秒前
Hina完成签到,获得积分10
8秒前
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401