Real-Time Movie-Induced Discrete Emotion Recognition from EEG Signals

厌恶 悲伤 价(化学) 心理学 愤怒 唤醒 认知心理学 娱乐 脑电图 情感计算 情商 面部表情 人工智能 计算机科学 社会心理学 沟通 神经科学 物理 精神科 量子力学
作者
Yong‐Jin Liu,Minjing Yu,Guozhen Zhao,Jinjing Song,Yan Ge,Yuanchun Shi
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 550-562 被引量:300
标识
DOI:10.1109/taffc.2017.2660485
摘要

Recognition of a human's continuous emotional states in real time plays an important role in machine emotional intelligence and human-machine interaction. Existing real-time emotion recognition systems use stimuli with low ecological validity (e.g., picture, sound) to elicit emotions and to recognise only valence and arousal. To overcome these limitations, in this paper, we construct a standardised database of 16 emotional film clips that were selected from over one thousand film excerpts. Based on emotional categories that are induced by these film clips, we propose a real-time movie-induced emotion recognition system for identifying an individual's emotional states through the analysis of brain waves. Thirty participants took part in this study and watched 16 standardised film clips that characterise real-life emotional experiences and target seven discrete emotions and neutrality. Our system uses a 2-s window and a 50 percent overlap between two consecutive windows to segment the EEG signals. Emotional states, including not only the valence and arousal dimensions but also similar discrete emotions in the valence-arousal coordinate space, are predicted in each window. Our real-time system achieves an overall accuracy of 92.26 percent in recognising high-arousal and valenced emotions from neutrality and 86.63 percent in recognising positive from negative emotions. Moreover, our system classifies three positive emotions (joy, amusement, tenderness) with an average of 86.43 percent accuracy and four negative emotions (anger, disgust, fear, sadness) with an average of 65.09 percent accuracy. These results demonstrate the advantage over the existing state-of-the-art real-time emotion recognition systems from EEG signals in terms of classification accuracy and the ability to recognise similar discrete emotions that are close in the valence-arousal coordinate space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助zky0216采纳,获得30
1秒前
所所应助以泪洗面奶采纳,获得10
2秒前
大龙哥886发布了新的文献求助10
3秒前
4秒前
4秒前
幽默果汁发布了新的文献求助10
6秒前
7秒前
zky0216完成签到,获得积分10
9秒前
李健的小迷弟应助羊羊羊采纳,获得10
9秒前
百香果完成签到,获得积分10
9秒前
lijall完成签到,获得积分10
9秒前
负责音响完成签到 ,获得积分10
9秒前
大黄日记本完成签到,获得积分20
9秒前
10秒前
10秒前
史前巨怪完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
威武的碧凡完成签到,获得积分20
13秒前
百香果发布了新的文献求助10
15秒前
迷人兰花完成签到,获得积分10
15秒前
小豆豆应助冬冬不是采纳,获得30
16秒前
nebula应助冬冬不是采纳,获得10
16秒前
17秒前
17秒前
高路发布了新的文献求助10
17秒前
醉熏的筝发布了新的文献求助10
17秒前
17秒前
FashionBoy应助郑zhenglanyou采纳,获得10
19秒前
19秒前
饭团发布了新的文献求助10
19秒前
871004188完成签到,获得积分10
20秒前
系小小鱼啊完成签到,获得积分10
21秒前
深情安青应助Kz采纳,获得10
22秒前
CC发布了新的文献求助10
22秒前
xiaomaxia完成签到 ,获得积分10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032