巨噬细胞
重编程
先天免疫系统
炎症
线粒体
细胞生物学
线粒体ROS
脂多糖
氧化磷酸化
一氧化氮
化学
免疫系统
生物
免疫学
体外
生物化学
细胞
内分泌学
作者
Jan Van den Bossche,Jeroen Baardman,Natasja A. Otto,Saskia van der Velden,Annette E. Neele,Susan M. van den Berg,Rosario Luque-Martin,Hung‐Jen Chen,Marieke C.S. Boshuizen,Mohamed I. M. Ahmed,Marten A. Hoeksema,Alex F. de Vos,Menno P.J. de Winther
出处
期刊:Cell Reports
[Elsevier]
日期:2016-10-01
卷期号:17 (3): 684-696
被引量:696
标识
DOI:10.1016/j.celrep.2016.09.008
摘要
Summary
Macrophages are innate immune cells that adopt diverse activation states in response to their microenvironment. Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is of high interest. Here, we find that mouse and human M1 macrophages fail to convert into M2 cells upon IL-4 exposure in vitro and in vivo. In sharp contrast, M2 macrophages are more plastic and readily repolarized into an inflammatory M1 state. We identify M1-associated inhibition of mitochondrial oxidative phosphorylation as the factor responsible for preventing M1→M2 repolarization. Inhibiting nitric oxide production, a key effector molecule in M1 cells, dampens the decline in mitochondrial function to improve metabolic and phenotypic reprogramming to M2 macrophages. Thus, inflammatory macrophage activation blunts oxidative phosphorylation, thereby preventing repolarization. Therapeutically restoring mitochondrial function might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI