硅
晶体硅
材料科学
光电子学
太阳能电池
异质结
单晶硅
能量转换效率
纳米技术
制作
聚合物太阳能电池
等离子太阳电池
量子点太阳电池
工程物理
工程类
病理
医学
替代医学
作者
Andrea Tomasi,Bertrand Paviet‐Salomon,Quentin Jeangros,Jan Haschke,Gabriel Christmann,Loris Barraud,Antoine Descoeudres,Johannes P. Seif,Sylvain Nicolay,Matthieu Despeisse,Stefaan De Wolf,Christophe Ballif
出处
期刊:Nature Energy
[Springer Nature]
日期:2017-04-24
卷期号:2 (5)
被引量:106
标识
DOI:10.1038/nenergy.2017.62
摘要
For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%. The most efficient silicon solar cells use interdigitated back-contact silicon heterojunction architectures. Here, the authors fabricate this type of cell via a simpler process, using an interband silicon tunnel junction for the electron contact and reaching a certified efficiency higher than 22%.
科研通智能强力驱动
Strongly Powered by AbleSci AI