压缩(物理)
脊髓
绳索
脊髓压迫
解剖
医学
薄片
后纵韧带骨化
外科
材料科学
脊髓病
复合材料
精神科
作者
Yoshihiko Kato,Tsukasa Kanchiku,Yasuaki Imajo,Kotaro Kimura,Kazuhiko Ichihara,Syunichi Kawano,Daisuke Hamanaka,Kentaro Yaji,Toshihiko Taguchi
标识
DOI:10.3171/2009.9.spine09314
摘要
Object The authors evaluated the biomechanical effect of 3 different degrees of static compression in a model of the spinal cord in order to investigate the effect of cord compression in patients with ossification of the posterior longitudinal ligament (OPLL). Methods A 3D finite element spinal cord model consisting of gray matter, white matter, and pia mater was established. As a simulation of OPLL-induced compression, a rigid plate compressed the anterior surface of the cord. The degrees of compression were 10, 20, and 40% of the anteroposterior (AP) diameter of the cord. The cord was supported from behind by the rigid body along its the posterior border, simulating the lamina. Stress distributions inside of the cord were evaluated. Results The stresses on the cord were very low under 10% compression. At 20% compression, the stresses on the cord increased very slightly. At 40% compression, the stresses on the cord became much higher than with 20% compression, and high stress distributions were observed in gray matter and the lateral and posterior funiculus. The stresses on the compressed layers were much higher than those on the uncompressed layer. Conclusions The stress distributions at 10 and 20% compression of the AP diameter of the spinal cord were very low. The stress distribution at 40% compression was much higher. The authors conclude that a critical point may exist between 20 and 40% compression of the AP diameter of the cord such that when the degree of the compression exceeds this point, the stress distribution becomes much higher, and that this may contribute to myelopathy.
科研通智能强力驱动
Strongly Powered by AbleSci AI