Hydrogen/Deuterium and 16O/18O-Exchange Mass Spectrometry Boosting the Reliability of Compound Identification

化学 质谱法 碎片(计算) 同位素 质谱 分子 洗脱 分析化学(期刊) 色谱法 原子物理学 核物理学 有机化学 物理 操作系统 计算机科学
作者
Yury Kostyukevich,Alexander Zherebker,Alexey A. Orlov,Oxana A. Kovaleva,Tatyana I. Burykina,Boris N. Isotov,Е. Н. Николаев
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (10): 6877-6885 被引量:15
标识
DOI:10.1021/acs.analchem.9b05379
摘要

Accurate and reliable identification of chemical compounds is the ultimate goal of mass spectrometry analyses. Currently, identification of compounds is usually based on the measurement of the accurate mass and fragmentation spectrum, chromatographic elution time, and collisional cross section. Unfortunately, despite the growth of databases of experimentally measured MS/MS spectra (such as MzCloud and Metlin) and developing software for predicting MS/MS fragments in silico from SMILES patterns (such as MetFrag, CFM-ID, and Ms-Finder), the problem of identification is still unsolved. The major issue is that the elution time and fragmentation spectra depend considerably on the equipment used and are not the same for different LC-MS systems. It means that any additional descriptors depending only on the structure of the chemical compound will be of big help for LC-MS/MS-based omics. Our approach is based on the characterization of compounds by the number of labile hydrogen and oxygen atoms in the molecule, which can be measured using hydrogen/deuterium and 16O/18O-exchange approaches. The number of labile atoms (those from -OH, -NH, ═O, and -COOH groups) can be predicted from SMILES patterns and serves as an additional structural descriptor when performing a database search. In addition, distribution of isotope labels among MS/MS fragments can be roughly predicted by software such as MetFrag or CFM-ID. Here, we present an approach utilizing the selection of structural candidates from a database on the basis of the number of functional groups and analysis of isotope labels distribution among fragments. It was found that our approach allows reduction of the search space by a factor of 10 and considerably increases the reliability of the compound identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nbnbaaa发布了新的文献求助10
刚刚
刚刚
1秒前
困的不行完成签到,获得积分20
1秒前
毛毛发布了新的文献求助10
1秒前
明明完成签到,获得积分20
1秒前
XXXX发布了新的社区帖子
2秒前
wanci应助笑面客采纳,获得10
2秒前
江峰发布了新的文献求助10
3秒前
吱布吱布发布了新的文献求助10
3秒前
九点半睡饱完成签到,获得积分10
3秒前
3秒前
坚强白凝完成签到,获得积分10
4秒前
4秒前
科研通AI5应助周新运采纳,获得10
4秒前
CodeCraft应助猫滩儿采纳,获得10
4秒前
领导范儿应助明亮画笔采纳,获得10
4秒前
5秒前
yyyyds发布了新的文献求助10
5秒前
wangjq发布了新的文献求助10
5秒前
SciGPT应助西柚采纳,获得10
6秒前
田様应助科研通管家采纳,获得30
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
Leif应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得30
7秒前
良璞完成签到,获得积分10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
李建勋应助qianchen采纳,获得10
8秒前
共享精神应助dongguoxia采纳,获得10
8秒前
9秒前
9秒前
顾矜应助醒醒采纳,获得10
9秒前
快乐仙知完成签到 ,获得积分10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519