Construction of a nomogram to predict overall survival for patients with M1 stage of colorectal cancer: A retrospective cohort study

医学 列线图 结直肠癌 内科学 比例危险模型 回顾性队列研究 队列 流行病学 多元统计 肿瘤科 多元分析 生存分析 阶段(地层学) 癌症 统计 生物 古生物学 数学
作者
Hua Ge,Yan Yan,Ming Xie,Lingfei Guo,Dai Tang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:72: 96-101 被引量:23
标识
DOI:10.1016/j.ijsu.2019.10.021
摘要

The M1 stage of colorectal cancer (CRC) has a poor prognosis. The aim of this study is to develop a reliable tool for the prediction for CRC patients with M1 stage, thus assisting the strategy of clinical diagnosis and treatment.CRC patient information collected in the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015 was extracted and evaluated. Multivariate analysis with Cox proportional hazards regression identified risk factors that predicted overall survival (OS) and the results were used to construct a nomogram to predict 3-, and 5-year OS in CRC patients with M1 stage. The Kaplan-Meier curve was plotted to evaluate OS differences.A total of 19,796 patients from the SEER database were included for analysis. All patients were randomly allocated to 2 cohorts, the training cohort (n = 13,860) and the validation cohort (n = 5936). Patients' age at diagnosis; gender; race; tumor site; tumor grade; T and N stage; brain, lung, bone, and liver metastasis status; marital status; and therapy were associated with survival in the multivariate models. All these factors were incorporated to construct a nomogram. Additionally, we divide all 19,796 patients into high-risk group and low-risk group according to our nomogram, and plotted Kaplan-Meier curve. The result indicated that patients with higher risk had worse survival outcomes.Our predictive model has the potential to provide an individualized risk estimate of survival in CRC patients with M1 stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王智勇完成签到,获得积分10
1秒前
1秒前
1秒前
安尔完成签到 ,获得积分10
1秒前
英姑应助QQ采纳,获得10
2秒前
2秒前
悠悠应助fallingstar采纳,获得30
2秒前
FashionBoy应助如风采纳,获得10
3秒前
4秒前
爆米花应助胖丁太甜了采纳,获得10
4秒前
快乐的睫毛完成签到 ,获得积分10
5秒前
橙子完成签到,获得积分10
5秒前
vicky完成签到,获得积分20
6秒前
铅笔丶完成签到,获得积分10
6秒前
6秒前
8秒前
西西发布了新的文献求助10
8秒前
悠悠悠幽谷完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
顾矜应助Singularity采纳,获得10
9秒前
susan完成签到,获得积分10
9秒前
abocide完成签到,获得积分10
10秒前
郭玉强完成签到,获得积分10
10秒前
死侍完成签到 ,获得积分10
10秒前
斯文败类应助呼叫554采纳,获得10
10秒前
11秒前
hyx完成签到,获得积分10
12秒前
vicky发布了新的文献求助10
12秒前
郭梦娇发布了新的文献求助10
12秒前
七舟发布了新的文献求助10
13秒前
大个应助乌拉拉采纳,获得10
14秒前
兰花二狗他爹完成签到,获得积分10
14秒前
cuicui完成签到,获得积分20
14秒前
jinkk完成签到,获得积分10
15秒前
东方元语应助无极微光采纳,获得20
15秒前
16秒前
16秒前
科研通AI2S应助fu采纳,获得30
16秒前
永吉发布了新的文献求助10
17秒前
wxd发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972