Improving aromatic water-contaminant detection with machine-learning classification and regression for simultaneous Absorbance-Transmission Excitation Emission Matrix (A-TEEM) spectroscopy

BTEX公司 偏最小二乘回归 基质(化学分析) 支持向量机 化学 光谱学 分析化学(期刊) 人工智能 二甲苯 环境化学 计算机科学 机器学习 色谱法 物理 量子力学 有机化学
作者
Adam M. Gilmore,Linxi Chen
标识
DOI:10.1117/12.2556434
摘要

Optical detection of aromatic water-contaminants from petroleum or industrial spills is challenging due to background signals from natural and/or man-made components. Further, while target contaminants are regulated at microgram per liter (μg/L) levels, conventional Raman, FTIR and UV-VIS spectroscopy are generally limited to milligram per liter (mg/L) detection ranges. This study reports on patented A-TEEM spectroscopy which primarily uses fluorescence excitation emission matrix data that are corrected for inner-filter effects (IFE) to eliminate spectral distortion. IFE correction improves resolution of low concentration contaminants from higher concentration backgrounds. The multidimensional ATEEM dataset contains spectral information in the UV-VIS range for all chromophoric and fluorescent compounds in the sample matrix. Nevertheless, because the spectra of many compounds overlap or vary in intensity extracting qualitative and quantitative information generally requires multivariate analyses. Importantly, the UV-VIS and EEM data can be analyzed in a 'multi-block' format to leverage the resolution capacity of these simultaneously acquired independent data sets. We evaluated Benzene, Toluene, Ethylbenzene and Xylene (BTEX) as well as naphthalene in filtered (0.45 μm) raw surface water before drinking water treatment. We show that typical methods including Partial Least Squares (PLS) and Parallel Factor Analysis (PARAFAC) exhibit a variety of pitfalls that can confound accurate contaminant detection and quantification. We report that classification and regression using methods including Support Vector Machine (SVM) and especially XGradient Boost (XGB) algorithms can be more effectively validated to rapidly yield lower μg/L detection limits with potential to automate early-warning reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Damtree发布了新的文献求助10
刚刚
研友_8Qxp7Z发布了新的文献求助10
1秒前
冷静的小虾米完成签到 ,获得积分10
2秒前
英姑应助晶婷采纳,获得10
3秒前
武雨寒完成签到,获得积分20
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
小杭76应助科研通管家采纳,获得10
4秒前
ding应助莎莎采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助洁净的千凡采纳,获得10
5秒前
6秒前
7秒前
武雨寒发布了新的文献求助10
7秒前
852应助浅夏丶采纳,获得10
8秒前
10秒前
博珺辰发布了新的文献求助10
10秒前
漫漫完成签到 ,获得积分10
10秒前
12秒前
汉堡包应助猫的树采纳,获得10
15秒前
桐桐应助动人的代芹采纳,获得10
16秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
syzh完成签到,获得积分10
20秒前
20秒前
万能图书馆应助XL神放采纳,获得10
20秒前
22秒前
上官若男应助数学情缘采纳,获得50
23秒前
研友_8Qxp7Z完成签到,获得积分10
23秒前
24秒前
莎莎发布了新的文献求助10
25秒前
科研通AI6应助yr采纳,获得10
26秒前
syzh发布了新的文献求助10
27秒前
28秒前
科研通AI6应助zheweiwang采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439