Improving aromatic water-contaminant detection with machine-learning classification and regression for simultaneous Absorbance-Transmission Excitation Emission Matrix (A-TEEM) spectroscopy

BTEX公司 偏最小二乘回归 基质(化学分析) 支持向量机 化学 光谱学 分析化学(期刊) 人工智能 二甲苯 环境化学 计算机科学 机器学习 色谱法 物理 量子力学 有机化学
作者
Adam M. Gilmore,Linxi Chen
标识
DOI:10.1117/12.2556434
摘要

Optical detection of aromatic water-contaminants from petroleum or industrial spills is challenging due to background signals from natural and/or man-made components. Further, while target contaminants are regulated at microgram per liter (μg/L) levels, conventional Raman, FTIR and UV-VIS spectroscopy are generally limited to milligram per liter (mg/L) detection ranges. This study reports on patented A-TEEM spectroscopy which primarily uses fluorescence excitation emission matrix data that are corrected for inner-filter effects (IFE) to eliminate spectral distortion. IFE correction improves resolution of low concentration contaminants from higher concentration backgrounds. The multidimensional ATEEM dataset contains spectral information in the UV-VIS range for all chromophoric and fluorescent compounds in the sample matrix. Nevertheless, because the spectra of many compounds overlap or vary in intensity extracting qualitative and quantitative information generally requires multivariate analyses. Importantly, the UV-VIS and EEM data can be analyzed in a 'multi-block' format to leverage the resolution capacity of these simultaneously acquired independent data sets. We evaluated Benzene, Toluene, Ethylbenzene and Xylene (BTEX) as well as naphthalene in filtered (0.45 μm) raw surface water before drinking water treatment. We show that typical methods including Partial Least Squares (PLS) and Parallel Factor Analysis (PARAFAC) exhibit a variety of pitfalls that can confound accurate contaminant detection and quantification. We report that classification and regression using methods including Support Vector Machine (SVM) and especially XGradient Boost (XGB) algorithms can be more effectively validated to rapidly yield lower μg/L detection limits with potential to automate early-warning reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hao采纳,获得10
刚刚
1秒前
1秒前
香蕉觅云应助阿湫采纳,获得10
2秒前
星辰大海应助星辰采纳,获得10
2秒前
阿卡宁完成签到,获得积分10
2秒前
lzw完成签到 ,获得积分10
2秒前
沉静烧仙草完成签到,获得积分20
3秒前
烟花应助嘉嘉琦采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
accepted应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
cdh1994应助kcmat采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
我是老大应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得20
5秒前
科目三应助科研通管家采纳,获得30
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048