亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving aromatic water-contaminant detection with machine-learning classification and regression for simultaneous Absorbance-Transmission Excitation Emission Matrix (A-TEEM) spectroscopy

BTEX公司 偏最小二乘回归 基质(化学分析) 支持向量机 化学 光谱学 分析化学(期刊) 人工智能 二甲苯 环境化学 计算机科学 机器学习 色谱法 物理 量子力学 有机化学
作者
Adam M. Gilmore,Linxi Chen
标识
DOI:10.1117/12.2556434
摘要

Optical detection of aromatic water-contaminants from petroleum or industrial spills is challenging due to background signals from natural and/or man-made components. Further, while target contaminants are regulated at microgram per liter (μg/L) levels, conventional Raman, FTIR and UV-VIS spectroscopy are generally limited to milligram per liter (mg/L) detection ranges. This study reports on patented A-TEEM spectroscopy which primarily uses fluorescence excitation emission matrix data that are corrected for inner-filter effects (IFE) to eliminate spectral distortion. IFE correction improves resolution of low concentration contaminants from higher concentration backgrounds. The multidimensional ATEEM dataset contains spectral information in the UV-VIS range for all chromophoric and fluorescent compounds in the sample matrix. Nevertheless, because the spectra of many compounds overlap or vary in intensity extracting qualitative and quantitative information generally requires multivariate analyses. Importantly, the UV-VIS and EEM data can be analyzed in a 'multi-block' format to leverage the resolution capacity of these simultaneously acquired independent data sets. We evaluated Benzene, Toluene, Ethylbenzene and Xylene (BTEX) as well as naphthalene in filtered (0.45 μm) raw surface water before drinking water treatment. We show that typical methods including Partial Least Squares (PLS) and Parallel Factor Analysis (PARAFAC) exhibit a variety of pitfalls that can confound accurate contaminant detection and quantification. We report that classification and regression using methods including Support Vector Machine (SVM) and especially XGradient Boost (XGB) algorithms can be more effectively validated to rapidly yield lower μg/L detection limits with potential to automate early-warning reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
ICSSCI完成签到,获得积分10
27秒前
40秒前
董可以发布了新的文献求助10
44秒前
风华正茂完成签到,获得积分10
1分钟前
1分钟前
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
桃桃发布了新的文献求助10
1分钟前
可爱的函函应助桃桃采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
所所应助爱笑的毛衣采纳,获得10
2分钟前
2分钟前
2分钟前
duan完成签到 ,获得积分10
2分钟前
holder完成签到,获得积分10
3分钟前
3分钟前
沐白发布了新的文献求助10
3分钟前
3分钟前
刘宇童发布了新的文献求助10
3分钟前
大模型应助吕易巧采纳,获得10
3分钟前
迷人问兰完成签到,获得积分10
3分钟前
闪闪映易完成签到 ,获得积分10
3分钟前
3分钟前
吕易巧发布了新的文献求助10
3分钟前
吕易巧完成签到,获得积分10
4分钟前
4分钟前
Liiiiiiiiii发布了新的文献求助10
4分钟前
XuchaoD完成签到,获得积分10
4分钟前
4分钟前
今后应助Liiiiiiiiii采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990049
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270976
什么是DOI,文献DOI怎么找? 1805166
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228