Improving aromatic water-contaminant detection with machine-learning classification and regression for simultaneous Absorbance-Transmission Excitation Emission Matrix (A-TEEM) spectroscopy

BTEX公司 偏最小二乘回归 基质(化学分析) 支持向量机 化学 光谱学 分析化学(期刊) 人工智能 二甲苯 环境化学 计算机科学 机器学习 色谱法 物理 量子力学 有机化学
作者
Adam M. Gilmore,Linxi Chen
标识
DOI:10.1117/12.2556434
摘要

Optical detection of aromatic water-contaminants from petroleum or industrial spills is challenging due to background signals from natural and/or man-made components. Further, while target contaminants are regulated at microgram per liter (μg/L) levels, conventional Raman, FTIR and UV-VIS spectroscopy are generally limited to milligram per liter (mg/L) detection ranges. This study reports on patented A-TEEM spectroscopy which primarily uses fluorescence excitation emission matrix data that are corrected for inner-filter effects (IFE) to eliminate spectral distortion. IFE correction improves resolution of low concentration contaminants from higher concentration backgrounds. The multidimensional ATEEM dataset contains spectral information in the UV-VIS range for all chromophoric and fluorescent compounds in the sample matrix. Nevertheless, because the spectra of many compounds overlap or vary in intensity extracting qualitative and quantitative information generally requires multivariate analyses. Importantly, the UV-VIS and EEM data can be analyzed in a 'multi-block' format to leverage the resolution capacity of these simultaneously acquired independent data sets. We evaluated Benzene, Toluene, Ethylbenzene and Xylene (BTEX) as well as naphthalene in filtered (0.45 μm) raw surface water before drinking water treatment. We show that typical methods including Partial Least Squares (PLS) and Parallel Factor Analysis (PARAFAC) exhibit a variety of pitfalls that can confound accurate contaminant detection and quantification. We report that classification and regression using methods including Support Vector Machine (SVM) and especially XGradient Boost (XGB) algorithms can be more effectively validated to rapidly yield lower μg/L detection limits with potential to automate early-warning reporting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助谛听不听采纳,获得10
1秒前
时尚的向日葵完成签到,获得积分10
2秒前
小唐发布了新的文献求助10
2秒前
2秒前
搞怪灯泡完成签到,获得积分10
3秒前
泥嚎小周发布了新的文献求助10
4秒前
4秒前
不倦完成签到,获得积分0
4秒前
美好斓应助无敌小狐采纳,获得100
4秒前
大圣发布了新的文献求助10
5秒前
Amuro完成签到 ,获得积分10
5秒前
研友_1066完成签到,获得积分10
5秒前
Tian发布了新的文献求助10
5秒前
txy完成签到 ,获得积分10
5秒前
timw完成签到,获得积分20
6秒前
TT完成签到,获得积分10
6秒前
Akim应助陆小果采纳,获得10
6秒前
7秒前
天之道发布了新的文献求助10
8秒前
Orange应助至浩采纳,获得10
8秒前
南冥发布了新的文献求助10
8秒前
9秒前
尾状叶完成签到 ,获得积分10
10秒前
10秒前
大模型应助谦让的口红采纳,获得10
10秒前
12秒前
Ngu完成签到,获得积分10
13秒前
kgrvlm完成签到 ,获得积分10
13秒前
13秒前
无花果应助大圣采纳,获得10
14秒前
15秒前
NexusExplorer应助小唐采纳,获得10
16秒前
Ding完成签到,获得积分10
16秒前
熊尼完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487