Improving aromatic water-contaminant detection with machine-learning classification and regression for simultaneous Absorbance-Transmission Excitation Emission Matrix (A-TEEM) spectroscopy

BTEX公司 偏最小二乘回归 基质(化学分析) 支持向量机 化学 光谱学 分析化学(期刊) 人工智能 二甲苯 环境化学 计算机科学 机器学习 色谱法 物理 量子力学 有机化学
作者
Adam M. Gilmore,Linxi Chen
标识
DOI:10.1117/12.2556434
摘要

Optical detection of aromatic water-contaminants from petroleum or industrial spills is challenging due to background signals from natural and/or man-made components. Further, while target contaminants are regulated at microgram per liter (μg/L) levels, conventional Raman, FTIR and UV-VIS spectroscopy are generally limited to milligram per liter (mg/L) detection ranges. This study reports on patented A-TEEM spectroscopy which primarily uses fluorescence excitation emission matrix data that are corrected for inner-filter effects (IFE) to eliminate spectral distortion. IFE correction improves resolution of low concentration contaminants from higher concentration backgrounds. The multidimensional ATEEM dataset contains spectral information in the UV-VIS range for all chromophoric and fluorescent compounds in the sample matrix. Nevertheless, because the spectra of many compounds overlap or vary in intensity extracting qualitative and quantitative information generally requires multivariate analyses. Importantly, the UV-VIS and EEM data can be analyzed in a 'multi-block' format to leverage the resolution capacity of these simultaneously acquired independent data sets. We evaluated Benzene, Toluene, Ethylbenzene and Xylene (BTEX) as well as naphthalene in filtered (0.45 μm) raw surface water before drinking water treatment. We show that typical methods including Partial Least Squares (PLS) and Parallel Factor Analysis (PARAFAC) exhibit a variety of pitfalls that can confound accurate contaminant detection and quantification. We report that classification and regression using methods including Support Vector Machine (SVM) and especially XGradient Boost (XGB) algorithms can be more effectively validated to rapidly yield lower μg/L detection limits with potential to automate early-warning reporting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦汉的抉择完成签到,获得积分10
刚刚
老王发布了新的文献求助10
刚刚
迷人书蝶发布了新的文献求助10
刚刚
威武洙完成签到,获得积分20
1秒前
kik发布了新的文献求助10
1秒前
Eliauk完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
zz发布了新的文献求助10
3秒前
HUYUE完成签到 ,获得积分10
3秒前
徐仁森发布了新的文献求助10
3秒前
一灯大师发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
哈哈发布了新的文献求助10
5秒前
7秒前
蝴蝶完成签到,获得积分10
7秒前
YYY发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
LY发布了新的文献求助10
9秒前
如意皮带发布了新的文献求助10
9秒前
9秒前
花花哈发布了新的文献求助10
9秒前
陌陌发布了新的文献求助10
9秒前
火星上小天鹅关注了科研通微信公众号
10秒前
可爱的函函应助杨潇丶丶采纳,获得10
10秒前
11秒前
赖赖给赖赖的求助进行了留言
11秒前
11秒前
小小美少女完成签到 ,获得积分10
12秒前
hhh完成签到,获得积分10
12秒前
12秒前
cc发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729