Robust Detection of Bearing Early Fault Based on Deep Transfer Learning

方位(导航) 人工智能 深度学习 计算机科学 故障检测与隔离 断层(地质) 学习迁移 噪音(视频) 模式识别(心理学) 可靠性(半导体) 降噪 代表(政治) 特征(语言学) 功率(物理) 执行机构 政治 量子力学 政治学 哲学 地震学 地质学 法学 语言学 物理 图像(数学)
作者
Wentao Mao,Di Zhang,Siyu Tian,Jiamei Tang
出处
期刊:Electronics [MDPI AG]
卷期号:9 (2): 323-323 被引量:14
标识
DOI:10.3390/electronics9020323
摘要

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助虚幻的安容采纳,获得10
2秒前
钟山完成签到,获得积分10
3秒前
4秒前
雷颖完成签到,获得积分10
4秒前
4秒前
5秒前
666关注了科研通微信公众号
5秒前
等待日记本完成签到 ,获得积分10
5秒前
8秒前
吃猫的鱼发布了新的文献求助10
9秒前
搜集达人应助sss采纳,获得10
9秒前
9秒前
vander发布了新的文献求助10
10秒前
小吕发布了新的文献求助10
11秒前
15秒前
15秒前
16秒前
wyl完成签到,获得积分10
18秒前
janice发布了新的文献求助20
18秒前
YoYo发布了新的文献求助10
19秒前
小耳朵发布了新的文献求助10
21秒前
Owen应助zwb采纳,获得10
22秒前
22秒前
Akim应助tao采纳,获得50
23秒前
子车碧琴发布了新的文献求助10
24秒前
虚幻的安容完成签到,获得积分10
24秒前
cxxx完成签到 ,获得积分10
25秒前
爆米花应助effortless采纳,获得10
25秒前
wyl发布了新的文献求助10
26秒前
27秒前
乐荷完成签到,获得积分10
30秒前
30秒前
下颌磨牙钳完成签到 ,获得积分10
31秒前
斯文败类应助Apr9810h采纳,获得10
32秒前
wxy完成签到 ,获得积分10
35秒前
38秒前
38秒前
高高代珊完成签到 ,获得积分10
38秒前
治愈小羊完成签到,获得积分10
39秒前
40秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150268
求助须知:如何正确求助?哪些是违规求助? 2801406
关于积分的说明 7844576
捐赠科研通 2458893
什么是DOI,文献DOI怎么找? 1308793
科研通“疑难数据库(出版商)”最低求助积分说明 628566
版权声明 601721