亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Detection of Bearing Early Fault Based on Deep Transfer Learning

方位(导航) 人工智能 深度学习 计算机科学 故障检测与隔离 断层(地质) 学习迁移 噪音(视频) 模式识别(心理学) 可靠性(半导体) 降噪 代表(政治) 特征(语言学) 功率(物理) 执行机构 政治 量子力学 政治学 哲学 地震学 地质学 法学 语言学 物理 图像(数学)
作者
Wentao Mao,Di Zhang,Siyu Tian,Jiamei Tang
出处
期刊:Electronics [MDPI AG]
卷期号:9 (2): 323-323 被引量:14
标识
DOI:10.3390/electronics9020323
摘要

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
19秒前
22秒前
lu发布了新的文献求助10
24秒前
Zhaoyuemeng完成签到 ,获得积分10
34秒前
白华苍松发布了新的文献求助20
35秒前
FashionBoy应助lu采纳,获得10
36秒前
38秒前
41秒前
顾矜应助在南方看北方采纳,获得10
45秒前
48秒前
53秒前
57秒前
1分钟前
桐桐应助Clem采纳,获得10
1分钟前
1分钟前
英俊的铭应助大半个菜鸟采纳,获得10
1分钟前
八八完成签到,获得积分10
1分钟前
Akim应助科研进化中采纳,获得10
1分钟前
1分钟前
斯文败类应助xun采纳,获得10
2分钟前
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
2分钟前
Clem发布了新的文献求助10
2分钟前
2分钟前
2分钟前
华仔应助xun采纳,获得10
3分钟前
3分钟前
CodeCraft应助在南方看北方采纳,获得10
3分钟前
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
4分钟前
幽默的太阳完成签到 ,获得积分10
4分钟前
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
4分钟前
共享精神应助科研进化中采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529195
求助须知:如何正确求助?哪些是违规求助? 4618365
关于积分的说明 14562521
捐赠科研通 4557360
什么是DOI,文献DOI怎么找? 2497456
邀请新用户注册赠送积分活动 1477693
关于科研通互助平台的介绍 1449117