Robust Detection of Bearing Early Fault Based on Deep Transfer Learning

方位(导航) 人工智能 深度学习 计算机科学 故障检测与隔离 断层(地质) 学习迁移 噪音(视频) 模式识别(心理学) 可靠性(半导体) 降噪 代表(政治) 特征(语言学) 功率(物理) 执行机构 政治 量子力学 政治学 哲学 地震学 地质学 法学 语言学 物理 图像(数学)
作者
Wentao Mao,Di Zhang,Siyu Tian,Jiamei Tang
出处
期刊:Electronics [MDPI AG]
卷期号:9 (2): 323-323 被引量:14
标识
DOI:10.3390/electronics9020323
摘要

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助彬彬采纳,获得10
刚刚
大个应助佚名采纳,获得30
刚刚
刚刚
1秒前
CRUSADER发布了新的文献求助10
1秒前
yu完成签到,获得积分10
2秒前
Hello应助胡树采纳,获得10
2秒前
2秒前
共享精神应助kk采纳,获得30
3秒前
che发布了新的文献求助10
3秒前
3秒前
所所应助Levy采纳,获得10
3秒前
谷雨应助miles采纳,获得10
3秒前
猫猫猫发布了新的文献求助10
4秒前
chickensandwhich完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
5秒前
谨慎的擎宇完成签到,获得积分10
5秒前
weddcf发布了新的文献求助10
6秒前
hululaoqi发布了新的文献求助10
7秒前
8秒前
酷波er应助飘逸的雪碧采纳,获得10
8秒前
无花果应助fash采纳,获得10
8秒前
xuhandi发布了新的文献求助10
8秒前
小女子常戚戚完成签到,获得积分10
8秒前
椰子水给椰子水的求助进行了留言
9秒前
AGOUTI完成签到,获得积分10
9秒前
9秒前
10秒前
脑洞疼应助毛毛虫采纳,获得10
10秒前
10秒前
科研通AI6应助提拉米苏打采纳,获得10
10秒前
10秒前
乐观的幼珊完成签到,获得积分10
11秒前
11秒前
12秒前
科目三应助自觉的溪灵采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382