清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust Detection of Bearing Early Fault Based on Deep Transfer Learning

方位(导航) 人工智能 深度学习 计算机科学 故障检测与隔离 断层(地质) 学习迁移 噪音(视频) 模式识别(心理学) 可靠性(半导体) 降噪 代表(政治) 特征(语言学) 功率(物理) 执行机构 政治 量子力学 政治学 哲学 地震学 地质学 法学 语言学 物理 图像(数学)
作者
Wentao Mao,Di Zhang,Siyu Tian,Jiamei Tang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (2): 323-323 被引量:14
标识
DOI:10.3390/electronics9020323
摘要

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助50
4秒前
方白秋完成签到,获得积分10
10秒前
LINDENG2004完成签到 ,获得积分10
30秒前
32秒前
量子星尘发布了新的文献求助10
38秒前
ceeray23发布了新的文献求助20
41秒前
43秒前
烟花应助科研通管家采纳,获得10
1分钟前
温柔的柠檬完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ric发布了新的文献求助10
1分钟前
脑洞疼应助ceeray23采纳,获得20
1分钟前
1分钟前
2分钟前
2分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Krim完成签到 ,获得积分10
4分钟前
我有我风格完成签到 ,获得积分10
4分钟前
Akim应助George采纳,获得10
4分钟前
babalala完成签到,获得积分10
4分钟前
我是笨蛋完成签到 ,获得积分10
4分钟前
Virtual应助babalala采纳,获得20
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
4分钟前
TheaGao完成签到 ,获得积分0
4分钟前
George发布了新的文献求助10
5分钟前
踏实数据线完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
Benhnhk21完成签到,获得积分10
6分钟前
红枫没有微雨怜完成签到 ,获得积分10
6分钟前
慕青应助dcm采纳,获得10
7分钟前
瘦瘦的枫叶完成签到 ,获得积分10
8分钟前
wythu16完成签到,获得积分10
8分钟前
星辰大海应助Carlos_Soares采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612350
求助须知:如何正确求助?哪些是违规求助? 4017599
关于积分的说明 12436515
捐赠科研通 3699718
什么是DOI,文献DOI怎么找? 2040286
邀请新用户注册赠送积分活动 1073108
科研通“疑难数据库(出版商)”最低求助积分说明 956819