Robust Detection of Bearing Early Fault Based on Deep Transfer Learning

方位(导航) 人工智能 深度学习 计算机科学 故障检测与隔离 断层(地质) 学习迁移 噪音(视频) 模式识别(心理学) 可靠性(半导体) 降噪 代表(政治) 特征(语言学) 功率(物理) 执行机构 政治 量子力学 政治学 哲学 地震学 地质学 法学 语言学 物理 图像(数学)
作者
Wentao Mao,Di Zhang,Siyu Tian,Jiamei Tang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:9 (2): 323-323 被引量:14
标识
DOI:10.3390/electronics9020323
摘要

In recent years, machine learning techniques have been proven to be a promising tool for early fault detection of rolling bearings. In many actual applications, however, bearing whole-life data are not easy to be historically accumulated, while insufficient data may result in training a detection model that is not good enough. If utilizing the available data under different working conditions to facilitate model training, the data distribution of different bearings are usually quite different, which does not meet the precondition of i n d e p e n d e n t a n d i d e n t i c a l d i s t r i b u t i o n ( i . i . d ) and tends to cause performance reduction. In addition, disturbed by the unstable noise under complex conditions, most of the current detection methods are inclined to raise false alarms, so that the reliability of detection results needs to be improved. To solve these problems, a robust detection method for bearings early fault is proposed based on deep transfer learning. The method includes offline stage and online stage. In the offline stage, by introducing a deep auto-encoder network with domain adaptation, the distribution inconsistency of normal state data among different bearings can be weakened, then the common feature representation of the normal state is obtained. With the extracted common features, a new state assessment method based on the robust deep auto-encoder network is proposed to evaluate the boundary between normal state and early fault state in the low-rank feature space. By training a support vector machine classifier, the detection model is established. In the online stage, along with the data batch arriving sequentially, the features of target bearing are extracted using the common representation learnt in the offline stage, and online detection is conducted by feeding them into the SVM model. Experimental results on IEEE PHM Challenge 2012 bearing dataset and XJTU-SY dataset show that the proposed approach outperforms several state-of-the-art detection methods in terms of detection accuracy and false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路漫漫123完成签到,获得积分10
1秒前
单薄的夜南应助sxl1209采纳,获得10
1秒前
1秒前
777给777的求助进行了留言
1秒前
Boundless发布了新的文献求助10
1秒前
1秒前
脑洞疼应助最溜皮大爷采纳,获得10
1秒前
jler完成签到,获得积分10
2秒前
zyyyyyy发布了新的文献求助10
2秒前
包包包包完成签到,获得积分10
2秒前
研友_VZG7GZ应助淬h采纳,获得10
2秒前
妥妥酱发布了新的文献求助30
2秒前
LiZhao完成签到,获得积分10
3秒前
3秒前
苏逊完成签到,获得积分10
4秒前
肖木木发布了新的文献求助10
4秒前
wanci应助无名采纳,获得10
4秒前
4秒前
文章要有性价比完成签到,获得积分10
5秒前
负责的天佑完成签到,获得积分10
5秒前
5秒前
5秒前
艺阳完成签到,获得积分10
5秒前
桐桐应助迷路白枫采纳,获得10
6秒前
6秒前
Mercury完成签到,获得积分10
7秒前
豪哥大大完成签到,获得积分10
7秒前
7秒前
Eve完成签到,获得积分10
7秒前
careyzhou发布了新的文献求助10
7秒前
乐观文龙完成签到,获得积分10
7秒前
GIANTim发布了新的文献求助10
8秒前
8秒前
852应助宇宙中心采纳,获得10
8秒前
sijia发布了新的文献求助10
8秒前
mjj发布了新的文献求助10
9秒前
9秒前
隐形道之完成签到,获得积分10
9秒前
TMOMOR应助孟醒采纳,获得10
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970394
求助须知:如何正确求助?哪些是违规求助? 3515139
关于积分的说明 11177107
捐赠科研通 3250335
什么是DOI,文献DOI怎么找? 1795254
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805054