二氧化碳重整
纳米材料基催化剂
催化作用
甲烷
纳米颗粒
化学工程
烧结
氧化物
合成气
材料科学
集聚经济
碳纤维
镁
甲烷化
吸附
丙烷
一氧化碳
无机化学
蒸汽重整
化学
制氢
氢
纳米技术
冶金
有机化学
复合材料
工程类
复合数
作者
Youngdong Song,Ercan Özdemir,Sreerangappa Ramesh,Aldiar Adishev,S. Saravanan,Aadesh Harale,Mohammed Albuali,Bandar A. Fadhel,Aqil Jamal,Dohyun Moon,Sun Hee Choi,Cafer T. Yavuz
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2020-02-14
卷期号:367 (6479): 777-781
被引量:514
标识
DOI:10.1126/science.aav2412
摘要
Overcoming surface defects Dry reforming of methane with carbon dioxide creates a mixture of hydrogen and carbon monoxide—synthesis gas—which can be converted into liquid fuels. However, heterogeneous catalysts for this reaction are prone to deactivation through unwanted carbon deposition (coking) and loss of surface area of adsorbed metal nanoparticles through agglomeration (sintering). Y. Song et al. used highly crystalline fumed magnesium oxide to support molybdenumdoped nickel nanoparticle catalysts (see the Perspective by Chen and Xu). On heating, the nanoparticles migrated on the oxide surface to step edges to form larger, highly stable nanoparticles. This process also passivated sites for coking on the oxide to produce a catalyst with high activity and longevity at 800°C. Science , this issue p. 777 ; see also p. 737
科研通智能强力驱动
Strongly Powered by AbleSci AI