Accelerating Atomic Catalyst Discovery by Theoretical Calculations‐Machine Learning Strategy

材料科学 催化作用 密度泛函理论 吸附 匡威 工作(物理) 计算化学 计算机科学 纳米技术 热力学 物理化学 量子力学 物理 有机化学 数学 化学 几何学
作者
Mingzi Sun,Alan William Dougherty,Bolong Huang,Yuliang Li,Chun‐Hua Yan
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:10 (12) 被引量:132
标识
DOI:10.1002/aenm.201903949
摘要

Abstract Atomic catalysts (AC) are emerging as a highly attractive research topic, especially in sustainable energy fields. Lack of a full picture of the hydrogen evolution reaction (HER) impedes the future development of potential electrocatalysts. In this work, the systematic investigation of the HER process in graphdyine (GDY) based AC is presented in terms of the adsorption energies, adsorption trend, electronic structures, reaction pathway, and active sites. This comprehensive work innovatively reveals GDY based AC for HER covering all the transition metals (TM) and lanthanide (Ln) metals, enabling the screening of potential catalysts. The density functional theory (DFT) calculations carefully explore the HER performance beyond the comparison of sole H adsorption. Therefore, the screened catalysts candidates not only match with experimental results but also provide significant references for novel catalysts. Moreover, the machine learning (ML) technique bag‐tree approach is innovatively utilized based on the fuzzy model for data separation and converse prediction of the HER performance, which indicates a similar result to the theoretical calculations. From two independent theoretical perspectives (DFT and ML), this work proposes pivotal guidelines for experimental catalyst design and synthesis. The proposed advanced research strategy shows great potential as a general approach in other energy‐related areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artin_Sun完成签到,获得积分10
1秒前
1秒前
华仔应助岳维芸采纳,获得10
1秒前
烟花应助岳维芸采纳,获得10
1秒前
yiyi完成签到,获得积分20
2秒前
杨二锤发布了新的文献求助10
2秒前
3秒前
3秒前
所所应助张巨锋采纳,获得10
4秒前
蓝天应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
Wind应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
litt应助科研通管家采纳,获得10
4秒前
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
李健的小迷弟应助金肆采纳,获得10
5秒前
11发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
可爱的函函应助gdh采纳,获得10
6秒前
6秒前
橘子发布了新的文献求助10
6秒前
7秒前
qqq完成签到 ,获得积分10
8秒前
猪猪猪发布了新的文献求助10
8秒前
李健的粉丝团团长应助Lin采纳,获得10
8秒前
9秒前
qiii发布了新的文献求助10
9秒前
9秒前
10秒前
yiyi发布了新的文献求助10
10秒前
11秒前
wx完成签到,获得积分20
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233