亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The delineation of largely deformed brain midline using regression‐based line detection network

稳健性(进化) 卷积神经网络 人工智能 中线偏移 地标 深度学习 回归 计算机科学 计算机视觉 模式识别(心理学) 计算机断层摄影术 统计 数学 医学 放射科 生物 生物化学 基因
作者
Hao Wei,Xiangyu Tang,Minqing Zhang,Qingfeng Li,Xiaodan Xing,Xiang Zhou,Zhong Xue,Wenzhen Zhu,Zailiang Chen,Feng Shi
出处
期刊:Medical Physics [Wiley]
卷期号:47 (11): 5531-5542 被引量:6
标识
DOI:10.1002/mp.14302
摘要

Purpose The human brain has two cerebral hemispheres that are roughly symmetric and separated by a midline, which is nearly a straight line shown in axial computed tomography (CT) images in healthy subjects. However, brain diseases such as hematoma and tumors often cause midline shift, where the degree of shift can be regarded as a quantitative indication in clinical practice. To facilitate clinical evaluation, we need computer‐aided methods to automate this quantification. Nevertheless, most existing studies focused on the landmark‐ or symmetry‐based methods that provide only the existence of shift or its maximum distance, which could be easily affected by anatomical variability and large brain deformations. Intuitive results such as midline delineation or measurement are lacking. In this study, we focus on developing an automated and robust method based on the fully convolutional neural network for the delineation of midline in largely deformed brains. Methods We propose a novel regression‐based line detection network (RLDN) for the robust midline delineation, especially in largely deformed brains. Specifically, to improve the robustness of delineation in largely deformed brains, we regard the delineation of the midline as the skeleton extraction task and then use the multiscale bidirectional integration module to acquire more representative features. Based on the skeleton extraction, we incorporate the regression task into it to delineate more accurate and continuous midline, especially in largely deformed brains. Our study utilized the public CQ 500 dataset (128 subjects) for training with hold‐out validation on 61 subjects from a private cohort accrued from a local hospital. Results The mean line distance error and F1‐score were 1.17 ± 0.72 mm with 0.78 on CQ 500 test set, and 4.15 ± 3.97 mm with 0.61 on the private dataset. Besides, significant differences ( P < 0.05) were observed between our method and other comparative ones on these two datasets. Conclusions This work provides a novel solution to acquire robust delineation of the midline, especially in largely deformed brains, and achieves state‐of‐the‐art performance on the public and our private dataset, which makes it possible for automated diagnosis of relevant brain diseases in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
26秒前
zznzn发布了新的文献求助10
27秒前
小蘑菇应助kzf丶bryant采纳,获得10
35秒前
iShine完成签到 ,获得积分10
37秒前
计划完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
46秒前
47秒前
himes发布了新的文献求助10
52秒前
JamesPei应助甜青提采纳,获得10
52秒前
Owen应助LukeLion采纳,获得10
56秒前
himes完成签到,获得积分10
58秒前
1分钟前
李健应助麦麦采纳,获得10
1分钟前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
甜青提发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
麦麦发布了新的文献求助10
1分钟前
1分钟前
沫雨应助zznzn采纳,获得10
1分钟前
一只鲨呱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
在水一方应助wang采纳,获得10
2分钟前
轻松听双发布了新的文献求助10
2分钟前
2分钟前
从容芮完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助100
2分钟前
2分钟前
2分钟前
AZN完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得20
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
小二郎应助风中的雪采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911770
关于积分的说明 15134204
捐赠科研通 4829956
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540222
关于科研通互助平台的介绍 1498407