The delineation of largely deformed brain midline using regression‐based line detection network

稳健性(进化) 卷积神经网络 人工智能 中线偏移 地标 深度学习 回归 计算机科学 计算机视觉 模式识别(心理学) 计算机断层摄影术 统计 数学 医学 放射科 生物 生物化学 基因
作者
Hao Wei,Xiangyu Tang,Minqing Zhang,Qingfeng Li,Xiaodan Xing,Xiang Zhou,Zhong Xue,Wenzhen Zhu,Zailiang Chen,Feng Shi
出处
期刊:Medical Physics [Wiley]
卷期号:47 (11): 5531-5542 被引量:6
标识
DOI:10.1002/mp.14302
摘要

Purpose The human brain has two cerebral hemispheres that are roughly symmetric and separated by a midline, which is nearly a straight line shown in axial computed tomography (CT) images in healthy subjects. However, brain diseases such as hematoma and tumors often cause midline shift, where the degree of shift can be regarded as a quantitative indication in clinical practice. To facilitate clinical evaluation, we need computer‐aided methods to automate this quantification. Nevertheless, most existing studies focused on the landmark‐ or symmetry‐based methods that provide only the existence of shift or its maximum distance, which could be easily affected by anatomical variability and large brain deformations. Intuitive results such as midline delineation or measurement are lacking. In this study, we focus on developing an automated and robust method based on the fully convolutional neural network for the delineation of midline in largely deformed brains. Methods We propose a novel regression‐based line detection network (RLDN) for the robust midline delineation, especially in largely deformed brains. Specifically, to improve the robustness of delineation in largely deformed brains, we regard the delineation of the midline as the skeleton extraction task and then use the multiscale bidirectional integration module to acquire more representative features. Based on the skeleton extraction, we incorporate the regression task into it to delineate more accurate and continuous midline, especially in largely deformed brains. Our study utilized the public CQ 500 dataset (128 subjects) for training with hold‐out validation on 61 subjects from a private cohort accrued from a local hospital. Results The mean line distance error and F1‐score were 1.17 ± 0.72 mm with 0.78 on CQ 500 test set, and 4.15 ± 3.97 mm with 0.61 on the private dataset. Besides, significant differences ( P < 0.05) were observed between our method and other comparative ones on these two datasets. Conclusions This work provides a novel solution to acquire robust delineation of the midline, especially in largely deformed brains, and achieves state‐of‐the‐art performance on the public and our private dataset, which makes it possible for automated diagnosis of relevant brain diseases in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖雅绿完成签到,获得积分10
1秒前
Smile:)发布了新的文献求助10
1秒前
李十一完成签到,获得积分10
2秒前
科研修沟完成签到 ,获得积分10
2秒前
3秒前
3秒前
赵雨霏完成签到 ,获得积分10
4秒前
NB完成签到,获得积分10
4秒前
meng完成签到,获得积分10
5秒前
虫虫完成签到,获得积分10
6秒前
JingP完成签到,获得积分10
7秒前
7秒前
lsl完成签到 ,获得积分10
7秒前
8秒前
zxp发布了新的文献求助10
9秒前
读书的时候完成签到,获得积分10
11秒前
crave发布了新的文献求助10
12秒前
贵贵完成签到,获得积分10
13秒前
Lz完成签到,获得积分10
14秒前
玩命的寄翠完成签到 ,获得积分10
15秒前
潘道士完成签到 ,获得积分10
16秒前
曾建完成签到 ,获得积分10
16秒前
Sonder完成签到 ,获得积分10
17秒前
夏明明完成签到,获得积分10
17秒前
eve完成签到,获得积分10
17秒前
17秒前
白蝶完成签到 ,获得积分10
18秒前
大仙完成签到,获得积分10
18秒前
随遇而安完成签到 ,获得积分10
18秒前
风趣霆完成签到,获得积分10
18秒前
18秒前
跋扈完成签到,获得积分10
19秒前
田二亩完成签到,获得积分10
19秒前
Bioflying完成签到,获得积分10
20秒前
风希完成签到,获得积分10
21秒前
拼搏的问玉完成签到,获得积分10
21秒前
沉默士萧完成签到,获得积分10
22秒前
犹豫战斗机完成签到,获得积分10
22秒前
Ther完成签到,获得积分10
22秒前
ntxlks完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259