The delineation of largely deformed brain midline using regression‐based line detection network

稳健性(进化) 卷积神经网络 人工智能 中线偏移 地标 深度学习 回归 计算机科学 计算机视觉 模式识别(心理学) 计算机断层摄影术 统计 数学 医学 放射科 生物 基因 生物化学
作者
Hao Wei,Xiangyu Tang,Minqing Zhang,Qingfeng Li,Xiaodan Xing,Xiang Zhou,Zhong Xue,Wenzhen Zhu,Zailiang Chen,Feng Shi
出处
期刊:Medical Physics [Wiley]
卷期号:47 (11): 5531-5542 被引量:6
标识
DOI:10.1002/mp.14302
摘要

Purpose The human brain has two cerebral hemispheres that are roughly symmetric and separated by a midline, which is nearly a straight line shown in axial computed tomography (CT) images in healthy subjects. However, brain diseases such as hematoma and tumors often cause midline shift, where the degree of shift can be regarded as a quantitative indication in clinical practice. To facilitate clinical evaluation, we need computer‐aided methods to automate this quantification. Nevertheless, most existing studies focused on the landmark‐ or symmetry‐based methods that provide only the existence of shift or its maximum distance, which could be easily affected by anatomical variability and large brain deformations. Intuitive results such as midline delineation or measurement are lacking. In this study, we focus on developing an automated and robust method based on the fully convolutional neural network for the delineation of midline in largely deformed brains. Methods We propose a novel regression‐based line detection network (RLDN) for the robust midline delineation, especially in largely deformed brains. Specifically, to improve the robustness of delineation in largely deformed brains, we regard the delineation of the midline as the skeleton extraction task and then use the multiscale bidirectional integration module to acquire more representative features. Based on the skeleton extraction, we incorporate the regression task into it to delineate more accurate and continuous midline, especially in largely deformed brains. Our study utilized the public CQ 500 dataset (128 subjects) for training with hold‐out validation on 61 subjects from a private cohort accrued from a local hospital. Results The mean line distance error and F1‐score were 1.17 ± 0.72 mm with 0.78 on CQ 500 test set, and 4.15 ± 3.97 mm with 0.61 on the private dataset. Besides, significant differences ( P < 0.05) were observed between our method and other comparative ones on these two datasets. Conclusions This work provides a novel solution to acquire robust delineation of the midline, especially in largely deformed brains, and achieves state‐of‐the‐art performance on the public and our private dataset, which makes it possible for automated diagnosis of relevant brain diseases in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
soccer13发布了新的文献求助10
2秒前
脑洞疼应助呼延傲薇采纳,获得10
2秒前
欢呼雨兰发布了新的文献求助10
2秒前
巫马笑白完成签到,获得积分10
2秒前
acu完成签到,获得积分10
2秒前
SUN完成签到 ,获得积分10
2秒前
2秒前
85搏一博应助顺利发表采纳,获得10
3秒前
小马甲应助尊敬山兰采纳,获得10
3秒前
陈某某发布了新的文献求助10
3秒前
科研通AI2S应助纯牛奶采纳,获得10
4秒前
4秒前
5秒前
5秒前
woobinhua发布了新的文献求助10
5秒前
teamguichu发布了新的文献求助10
6秒前
lulu完成签到,获得积分10
6秒前
善学以致用应助依依采纳,获得10
6秒前
咚咚给咚咚的求助进行了留言
6秒前
所所应助一颗拜仁会闪采纳,获得10
6秒前
7秒前
fendy完成签到,获得积分0
7秒前
老婶子完成签到,获得积分10
7秒前
7秒前
763完成签到 ,获得积分10
8秒前
8秒前
清新的问枫完成签到,获得积分10
8秒前
思源应助不吃芹菜采纳,获得10
8秒前
lpd完成签到,获得积分10
8秒前
落后三颜完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
无限山晴完成签到,获得积分10
9秒前
754完成签到,获得积分10
11秒前
majf完成签到 ,获得积分10
11秒前
lx发布了新的文献求助10
11秒前
Ansels发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303676
求助须知:如何正确求助?哪些是违规求助? 2937918
关于积分的说明 8485391
捐赠科研通 2611871
什么是DOI,文献DOI怎么找? 1426396
科研通“疑难数据库(出版商)”最低求助积分说明 662601
邀请新用户注册赠送积分活动 647148