The delineation of largely deformed brain midline using regression‐based line detection network

稳健性(进化) 卷积神经网络 人工智能 中线偏移 地标 深度学习 回归 计算机科学 计算机视觉 模式识别(心理学) 计算机断层摄影术 统计 数学 医学 放射科 生物 基因 生物化学
作者
Hao Wei,Xiangyu Tang,Minqing Zhang,Qingfeng Li,Xiaodan Xing,Xiang Zhou,Zhong Xue,Wenzhen Zhu,Zailiang Chen,Feng Shi
出处
期刊:Medical Physics [Wiley]
卷期号:47 (11): 5531-5542 被引量:6
标识
DOI:10.1002/mp.14302
摘要

Purpose The human brain has two cerebral hemispheres that are roughly symmetric and separated by a midline, which is nearly a straight line shown in axial computed tomography (CT) images in healthy subjects. However, brain diseases such as hematoma and tumors often cause midline shift, where the degree of shift can be regarded as a quantitative indication in clinical practice. To facilitate clinical evaluation, we need computer‐aided methods to automate this quantification. Nevertheless, most existing studies focused on the landmark‐ or symmetry‐based methods that provide only the existence of shift or its maximum distance, which could be easily affected by anatomical variability and large brain deformations. Intuitive results such as midline delineation or measurement are lacking. In this study, we focus on developing an automated and robust method based on the fully convolutional neural network for the delineation of midline in largely deformed brains. Methods We propose a novel regression‐based line detection network (RLDN) for the robust midline delineation, especially in largely deformed brains. Specifically, to improve the robustness of delineation in largely deformed brains, we regard the delineation of the midline as the skeleton extraction task and then use the multiscale bidirectional integration module to acquire more representative features. Based on the skeleton extraction, we incorporate the regression task into it to delineate more accurate and continuous midline, especially in largely deformed brains. Our study utilized the public CQ 500 dataset (128 subjects) for training with hold‐out validation on 61 subjects from a private cohort accrued from a local hospital. Results The mean line distance error and F1‐score were 1.17 ± 0.72 mm with 0.78 on CQ 500 test set, and 4.15 ± 3.97 mm with 0.61 on the private dataset. Besides, significant differences ( P < 0.05) were observed between our method and other comparative ones on these two datasets. Conclusions This work provides a novel solution to acquire robust delineation of the midline, especially in largely deformed brains, and achieves state‐of‐the‐art performance on the public and our private dataset, which makes it possible for automated diagnosis of relevant brain diseases in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crescent完成签到 ,获得积分10
2秒前
无奈傲菡发布了新的文献求助10
2秒前
烟花应助123号采纳,获得10
5秒前
超帅的遥完成签到,获得积分10
5秒前
Zxc完成签到,获得积分10
6秒前
lbt完成签到 ,获得积分10
7秒前
yao完成签到 ,获得积分10
8秒前
8秒前
10秒前
11秒前
11秒前
doudou完成签到 ,获得积分10
11秒前
BCS完成签到,获得积分10
11秒前
领导范儿应助KYN采纳,获得10
11秒前
12秒前
独特的莫言完成签到,获得积分10
14秒前
lin发布了新的文献求助10
15秒前
aero完成签到 ,获得积分10
17秒前
123号完成签到,获得积分10
19秒前
充电宝应助TT采纳,获得10
21秒前
22秒前
22秒前
英姑应助荒野星辰采纳,获得10
24秒前
24秒前
YHY完成签到,获得积分10
26秒前
科研通AI5应助魏伯安采纳,获得10
26秒前
caoyy发布了新的文献求助10
26秒前
27秒前
28秒前
张喻235532完成签到,获得积分10
29秒前
失眠虔纹发布了新的文献求助10
30秒前
香蕉觅云应助糊涂的小伙采纳,获得10
30秒前
30秒前
sutharsons应助科研通管家采纳,获得200
32秒前
打打应助科研通管家采纳,获得10
32秒前
axin应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849