Personalized Residential Energy Usage Recommendation System Based on Load Monitoring and Collaborative Filtering

计算机科学 地铁列车时刻表 推荐系统 协同过滤 集合(抽象数据类型) 控制(管理) 人机交互 数据库 多媒体 万维网 人工智能 操作系统 程序设计语言
作者
Fengji Luo,Gianluca Ranzi,Weicong Kong,Gaoqi Liang,Zhao Yang Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 1253-1262 被引量:41
标识
DOI:10.1109/tii.2020.2983212
摘要

Residential demand response (DR) is recognized as a promising approach to improve grid energy efficiency and relieve the network stress. Many studies have been conducted to design home energy management systems that directly schedule and control the household appliances. Distinguished from existing works, this article proposes a personalized recommendation system (PRS) to learn energy-efficient household appliance usage experiences from a large scale of residential users, and recommends suitable appliance usage plans to users while taking their lifestyles into account. The proposed system is based on a collaborative filtering recommendation technique. The PRS first classifies a collection of users as "highly responsive users" and "less responsive users" based on their DR degree analysis. Then, for each less responsive user, the PRS infers the user's lifestyle from usage profiles of nonshiftable appliances and finds out users who have similar habits with the target user from the set of highly responsive users. Based on this, the PRS evaluates the lifestyle similarity between the target user and each smart user, aggregates the appliance usage experiences of highly responsive users, and makes appliance-use recommendations to the target user. Experiments based on a residential data simulator "SimHouse" are designed to validate the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助开朗熊猫采纳,获得10
1秒前
吱嗷赵发布了新的文献求助10
1秒前
zxyhhh完成签到 ,获得积分10
1秒前
霸气梦菲完成签到 ,获得积分10
1秒前
CodeCraft应助hhh采纳,获得10
1秒前
Zhaorf发布了新的文献求助10
2秒前
MRCHONG发布了新的文献求助10
2秒前
2秒前
Akim应助liuchao采纳,获得10
2秒前
动听的人英完成签到 ,获得积分10
2秒前
3秒前
coconut完成签到 ,获得积分10
3秒前
3秒前
脑洞疼应助Ll采纳,获得10
3秒前
3秒前
4秒前
Anne完成签到,获得积分10
4秒前
老迟到的凝丝完成签到,获得积分10
4秒前
金鸡奖发布了新的文献求助10
4秒前
邓邓邓妮妮子完成签到,获得积分10
4秒前
哇哈哈发布了新的文献求助10
4秒前
4秒前
andyxrz发布了新的文献求助30
5秒前
酒尚温完成签到,获得积分10
5秒前
5秒前
6秒前
Paul完成签到,获得积分10
6秒前
冰冰完成签到 ,获得积分10
6秒前
木木发布了新的文献求助10
6秒前
7秒前
涛浪完成签到,获得积分10
7秒前
上官若男应助yzy采纳,获得10
8秒前
会飞的小白完成签到,获得积分10
8秒前
8秒前
8564523发布了新的文献求助10
8秒前
珈蓝完成签到,获得积分10
9秒前
吉祥完成签到,获得积分0
9秒前
9秒前
10秒前
开心尔云完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672