Personalized Residential Energy Usage Recommendation System Based on Load Monitoring and Collaborative Filtering

计算机科学 地铁列车时刻表 推荐系统 协同过滤 集合(抽象数据类型) 控制(管理) 人机交互 数据库 多媒体 万维网 人工智能 程序设计语言 操作系统
作者
Fengji Luo,Gianluca Ranzi,Weicong Kong,Gaoqi Liang,Zhao Yang Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 1253-1262 被引量:41
标识
DOI:10.1109/tii.2020.2983212
摘要

Residential demand response (DR) is recognized as a promising approach to improve grid energy efficiency and relieve the network stress. Many studies have been conducted to design home energy management systems that directly schedule and control the household appliances. Distinguished from existing works, this article proposes a personalized recommendation system (PRS) to learn energy-efficient household appliance usage experiences from a large scale of residential users, and recommends suitable appliance usage plans to users while taking their lifestyles into account. The proposed system is based on a collaborative filtering recommendation technique. The PRS first classifies a collection of users as "highly responsive users" and "less responsive users" based on their DR degree analysis. Then, for each less responsive user, the PRS infers the user's lifestyle from usage profiles of nonshiftable appliances and finds out users who have similar habits with the target user from the set of highly responsive users. Based on this, the PRS evaluates the lifestyle similarity between the target user and each smart user, aggregates the appliance usage experiences of highly responsive users, and makes appliance-use recommendations to the target user. Experiments based on a residential data simulator "SimHouse" are designed to validate the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
CWNU_HAN应助科研通管家采纳,获得30
刚刚
CodeCraft应助科研通管家采纳,获得30
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得30
刚刚
竹筏过海应助科研通管家采纳,获得30
刚刚
大锤应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得30
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
芙卡洛斯发布了新的文献求助10
1秒前
嗯哼完成签到 ,获得积分10
2秒前
小王发布了新的文献求助20
2秒前
YQQQ发布了新的文献求助10
3秒前
3秒前
任性雨筠发布了新的文献求助10
3秒前
山哥发布了新的文献求助10
6秒前
7秒前
yuzhou完成签到 ,获得积分10
8秒前
wei完成签到,获得积分10
8秒前
Orange应助zhangst采纳,获得10
12秒前
心灵美绯完成签到,获得积分20
12秒前
14秒前
酷波er应助杰瑞院士采纳,获得10
15秒前
15秒前
15秒前
科研废柴应助白华苍松采纳,获得20
16秒前
lingxu完成签到,获得积分10
16秒前
充电宝应助悲凉的艳采纳,获得10
17秒前
南关三完成签到,获得积分10
17秒前
酷酷含羞草完成签到,获得积分10
17秒前
苗苗发布了新的文献求助10
21秒前
star发布了新的文献求助30
21秒前
桐桐应助费费仙女采纳,获得10
24秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226