subject to homogeneous Neumann boundary conditions in a bounded domain \begin{document}$ \Omega\subset \mathbb{R}^2 $\end{document} with smooth boundary, where the motility functions \begin{document}$ \gamma(v) $\end{document} and \begin{document}$ \chi(v) $\end{document} satisfy the following conditions
● \begin{document}$ (\gamma, \chi)\in [C^2[0, \infty)]^2 $\end{document} with \begin{document}$ \gamma(v)>0 $\end{document} and \begin{document}$ \frac{|\chi(v)|^2}{\gamma(v)} $\end{document} is bounded for all \begin{document}$ v\geq 0 $\end{document}.
By employing the method of energy estimates, we establish the existence of globally bounded solutions of ($\ast$) with \begin{document}$ \mu>0 $\end{document} for any \begin{document}$ u_0 \in W^{1, \infty}(\Omega) $\end{document} with \begin{document}$ u_0 \geq (\not\equiv) 0 $\end{document}. Then based on a Lyapunov function, we show that all solutions \begin{document}$ (u, v) $\end{document} of ($\ast$) will exponentially converge to the unique constant steady state \begin{document}$ (1, 1) $\end{document} provided \begin{document}$ \mu>\frac{K_0}{16} $\end{document} with \begin{document}$ K_0 = \max\limits_{0\leq v \leq \infty}\frac{|\chi(v)|^2}{\gamma(v)} $\end{document}.