Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage

自编码 深度学习 人工智能 计算机科学 支持向量机 模式识别(心理学) 编码器 加速度 无监督学习 机器学习 人工神经网络 经典力学 操作系统 物理
作者
Zilong Wang,Young‐Jin Cha
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (1): 406-425 被引量:212
标识
DOI:10.1177/1475921720934051
摘要

This article proposes an unsupervised deep learning–based approach to detect structural damage. Supervised deep learning methods have been proposed in recent years, but they require data from an intact structure and various damage scenarios of monitored structures for their training processes. However, the labeling work on the training data is typically time-consuming and costly, and sometimes collecting sufficient training data from various damage scenarios of infrastructures in service is impractical. In this article, the proposed unsupervised deep learning method based on a deep auto-encoder with an one-class support vector machine only uses the measured acceleration response data acquired from intact or baseline structures as training data, which enables future structural damage to be detected. The major contributions and novelties of the proposed method are as follows. First, an appropriate deep auto-encoder is carefully designed through comparative studies on the depth of neural networks. Second, the designed deep auto-encoder is taken as an extractor to obtain damage-sensitive features from the measured acceleration response data, and an one-class support vector machine is used as a damage detector. Third, experimental and numerical studies validate the high accuracy of the proposed method for damage detection: a 97.4% mean average for a 12-story numerical building model and a 91.0% accuracy for a laboratory-scaled steel bridge. Fourth, the proposed method also detects light damage (i.e. a 10% reduction in stiffness) with 96.9% to 99.0% accuracy, which shows its superior performance compared with the current state of the art. Fifth, it provides stable and more robust damage detection performance with reduced tuning parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助20
1秒前
2秒前
3秒前
科研1完成签到,获得积分10
5秒前
普外科老白完成签到,获得积分10
6秒前
可以2完成签到,获得积分10
9秒前
解解闷发布了新的文献求助10
9秒前
拼搏山槐完成签到 ,获得积分10
9秒前
kekao完成签到,获得积分10
10秒前
11秒前
嘿嘿嘿完成签到,获得积分10
13秒前
摘星012完成签到 ,获得积分10
15秒前
honne完成签到,获得积分10
16秒前
123发布了新的文献求助100
19秒前
20秒前
我是老大应助DVD采纳,获得10
22秒前
诗梦完成签到,获得积分10
22秒前
23秒前
高贵的思天完成签到,获得积分10
23秒前
上好佳完成签到 ,获得积分10
23秒前
打工人一枚完成签到,获得积分10
23秒前
周一一完成签到,获得积分10
24秒前
渔婆完成签到,获得积分10
24秒前
coolplex发布了新的文献求助10
25秒前
寒冷平蓝发布了新的文献求助10
25秒前
DJ完成签到,获得积分10
25秒前
26秒前
27秒前
28秒前
共享精神应助郑书亚采纳,获得10
29秒前
HEIKU应助司空豁采纳,获得10
29秒前
30秒前
金金金金完成签到,获得积分10
31秒前
32秒前
唐同学完成签到 ,获得积分10
33秒前
略略略发布了新的文献求助10
33秒前
33秒前
来了来了完成签到 ,获得积分10
38秒前
39秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999