NMR-Based Analysis of Pomegranate Juice Using Untargeted Metabolomics Coupled with Nested and Quantitative Approaches

化学 异核单量子相干光谱 代谢组学 定量分析(化学) 质子核磁共振 氨基酸 二维核磁共振波谱 核磁共振波谱 代谢物 色谱法 生物化学 立体化学
作者
Fenfen Tang,Emmanuel Hatzakis
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (16): 11177-11185 被引量:27
标识
DOI:10.1021/acs.analchem.0c01553
摘要

Pomegranate juice is a complex mixture of structurally diverse compounds appearing in various concentrations. The composition of the final product depends on several factors, such as the fruit variety and the addition of adulterants. Its diverse composition makes pomegranate juice an excellent system for assessing the potential of an analytical method for targeted and untargeted analysis. Here, we tested the ability of 1D and 2D NMR spectroscopy techniques for the targeted and untargeted metabolite analysis of pomegranate juice. The NMR spectra assignment was performed using the novel NOAH sequences and spiking with model compounds. Several metabolites, including sugars, organic acids, and amino acids, were identified and quantified in a rapid and simultaneous manner. Five internal standards were tested, with potassium hydrogen phthalate and dimethylmalonic acid found to be the most appropriate, based on their shorter T1 relaxation times and spectral simplicity, while MnCl2 was successfully applied as a relaxation agent for the reduction of the experimental time. Among the pulse sequences that were tested for their quantitative potential, the Carr–Purcell–Meiboom–Gill gave the best results. The quantitative, QEC-HSQC experiment was also found to be very promising for mixture analysis. Additionally, the potential of 1D/2D NMR-based untargeted analysis was successfully tested on two cases, namely, differentiation between cultivars and detection of adulteration with apple juice. This study demonstrates the proof of concept for 1D and 2D NMR methods in the targeted and untargeted analysis of pomegranate juice and can be extended to other complex matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
REN关闭了REN文献求助
1秒前
好运锦鲤完成签到 ,获得积分10
1秒前
美有姬完成签到,获得积分10
2秒前
万能图书馆应助何博士采纳,获得10
2秒前
科研通AI2S应助蘑菇采纳,获得10
2秒前
一平发布了新的文献求助10
3秒前
王一博完成签到,获得积分10
3秒前
4秒前
nihil完成签到,获得积分10
4秒前
活力的泥猴桃完成签到 ,获得积分10
5秒前
5秒前
6秒前
obito完成签到,获得积分10
6秒前
娜行发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
Ck完成签到,获得积分10
8秒前
烦烦完成签到 ,获得积分10
9秒前
百宝发布了新的文献求助10
10秒前
jiangnan发布了新的文献求助10
10秒前
Sev完成签到,获得积分10
10秒前
10秒前
可耐的乘风完成签到,获得积分10
10秒前
FIN应助obito采纳,获得30
11秒前
啾啾发布了新的文献求助10
11秒前
爱学习的向日葵完成签到,获得积分10
12秒前
12秒前
华仔应助泛泛之交采纳,获得10
13秒前
雪123发布了新的文献求助10
13秒前
13秒前
14秒前
charon发布了新的文献求助10
14秒前
凶狠的食铁兽完成签到,获得积分10
14秒前
星辰大海应助花花啊采纳,获得10
14秒前
华仔应助liuyingke采纳,获得10
14秒前
HEIKU应助还不如瞎写采纳,获得10
15秒前
liuliumei发布了新的文献求助30
16秒前
zhouzhou完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672