Deep Learning-Based Machinery Fault Diagnostics With Domain Adaptation Across Sensors at Different Places

断层(地质) 故障检测与隔离 人工神经网络 领域(数学分析) 适应(眼睛)
作者
Xiang Li,Wei Zhang,Nan-Xi Xu,Qian Ding
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:67 (8): 6785-6794 被引量:71
标识
DOI:10.1109/tie.2019.2935987
摘要

In the recent years, data-driven machinery fault diagnostic methods have been successfully developed, and the tasks where the training and testing data are from the same distribution have been well addressed. However, due to sensor malfunctions, the training and testing data can be collected at different places of machines, resulting in the feature space with significant distribution discrepancy. This challenging issue has received less attention in the current literature, and the existing approaches generally fail in such scenarios. This article proposes a domain adaptation method for machinery fault diagnostics based on deep learning. Adversarial training is introduced for marginal domain fusion, and unsupervised parallel data are explored to achieve conditional distribution alignments with respect to different machine health conditions. Experiments on two rotating machinery datasets are carried out for validations. The results suggest the proposed method is promising to address the fault diagnostic tasks with data from different places of machines, further enhancing applicability of data-driven methods in real industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiminonawa完成签到,获得积分0
刚刚
zrz完成签到,获得积分10
刚刚
1秒前
传奇3应助morlison采纳,获得10
1秒前
4秒前
4秒前
5秒前
6秒前
乐呀完成签到,获得积分10
6秒前
木头人呐完成签到 ,获得积分10
6秒前
小马甲应助吴岳采纳,获得10
6秒前
天天向上赶完成签到,获得积分10
6秒前
整齐的凡梦完成签到,获得积分10
7秒前
孙冉冉发布了新的文献求助10
8秒前
MHB应助towerman采纳,获得10
9秒前
Dean发布了新的文献求助10
9秒前
10秒前
加油加油发布了新的文献求助10
10秒前
lili完成签到 ,获得积分10
11秒前
文剑武书生完成签到,获得积分10
12秒前
科研通AI5应助无限鞅采纳,获得10
12秒前
12秒前
852应助木棉采纳,获得10
12秒前
13秒前
卓哥完成签到,获得积分10
14秒前
15秒前
Agan发布了新的文献求助10
15秒前
15秒前
16秒前
morlison发布了新的文献求助10
16秒前
科研通AI5应助金色年华采纳,获得10
18秒前
充电宝应助kh453采纳,获得10
18秒前
正经俠发布了新的文献求助10
18秒前
一衣发布了新的文献求助20
19秒前
可爱的函函应助药学牛马采纳,获得10
19秒前
XM发布了新的文献求助10
19秒前
专注之双完成签到,获得积分10
20秒前
SciGPT应助十一采纳,获得10
20秒前
20秒前
A1234完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808