Tutorial on Data Balancing: Application to Benchmarking Clinicians

协变量 标杆管理 结果(博弈论) 计算机科学 水准点(测量) 集合(抽象数据类型) 群(周期表) 缺少数据 统计 机器学习 数学 化学 数理经济学 大地测量学 有机化学 营销 业务 程序设计语言 地理
作者
Roshan Alemi,Amr ElRafey,Duncan Neuhauser,Farrokh Alemi
出处
期刊:Quality management in health care [Lippincott Williams & Wilkins]
卷期号:28 (1): 1-7
标识
DOI:10.1097/qmh.0000000000000203
摘要

In this tutorial, we show how data balancing, in general, and stratified covariate balancing, in particular, can be used to benchmark clinicians. This tutorial aims to explain the concepts behind data balancing to readers who do not have a strong statistical background. Data balancing enables the analyst to compare the performance of clinicians with their peer groups on the same set of patients. The comparison is done in 3 steps. First, the patients are described in terms of their conditions/comorbidities. Each combination of comorbidities is treated as a separate type of patient. Second, the analyst measures the frequency of observing different types of patients. Third, expected outcomes are calculated for both the clinician and the peer group. The expected outcome for the clinician is calculated as the sum of product of 2 terms: probability of and the average outcome for different types of patients. The expected outcome for the peer group is calculated in the same way, with one difference: the distribution of peer group's patients is switched with the distribution of the clinician's patients. This allows us to simulate the performance of peer group on the clinician's patients. This switch in frequencies accomplishes the same goal as using propensity weights, or covariate balancing weights, but it avoids the cumbersome need to estimate the weights. In switching the distributions, a problem arises when the peer group does not see the same type of patients as the clinician. When the peer group's outcome for some patient types is missing, a synthetic case is organized. These synthetic cases are constructed from the peer group's experience with 2 complementary parts of the missing case. The reliance on synthetic cases allows one to have a match for every type of clinician's patients. Together, the synthetic case and the switch of distribution allow one to simulate the performance of the clinician and the peer group on same set of cases. The tutorial walks the reader through examples. The procedures described here can be applied to data in electronic health records. We present Standard Query Language for doing so.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助许三多采纳,获得10
1秒前
雪宝宝完成签到,获得积分10
1秒前
yiwei发布了新的文献求助10
1秒前
1秒前
爵士黄瓜完成签到,获得积分10
2秒前
2秒前
远方完成签到 ,获得积分10
2秒前
Esther完成签到,获得积分10
3秒前
3秒前
4秒前
四憙发布了新的文献求助30
4秒前
念念发布了新的文献求助10
5秒前
英姑应助唯美采纳,获得10
5秒前
科研通AI5应助hetao286采纳,获得10
6秒前
Wby驳回了汉堡包应助
6秒前
韩晴发布了新的文献求助10
7秒前
7秒前
坚定的汉堡完成签到,获得积分10
7秒前
传奇3应助玩命的谷槐采纳,获得10
7秒前
August发布了新的文献求助10
8秒前
Yan发布了新的文献求助10
9秒前
kokocrl完成签到,获得积分10
9秒前
沉默的芒果完成签到,获得积分20
10秒前
10秒前
烟花应助calmxp采纳,获得10
10秒前
10秒前
卡萨卡萨发布了新的文献求助10
11秒前
科研通AI5应助笨笨采纳,获得10
13秒前
情怀应助念念采纳,获得10
13秒前
摩根完成签到,获得积分20
13秒前
14秒前
14秒前
lemon完成签到 ,获得积分10
14秒前
S77发布了新的文献求助10
14秒前
onesail发布了新的文献求助50
14秒前
苯二氮卓发布了新的文献求助10
14秒前
abc105发布了新的文献求助10
15秒前
16秒前
ylrjbxy发布了新的文献求助10
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744779
求助须知:如何正确求助?哪些是违规求助? 3287715
关于积分的说明 10055020
捐赠科研通 3003957
什么是DOI,文献DOI怎么找? 1649277
邀请新用户注册赠送积分活动 785246
科研通“疑难数据库(出版商)”最低求助积分说明 750960