膦酸盐
铀酰
吸附
锆
材料科学
离子交换
配体(生物化学)
化学
金属有机骨架
结晶学
无机化学
物理化学
有机化学
离子
生物化学
受体
作者
Wen Zhang,An Bu,Qingyuan Ji,Luofu Min,Song Zhao,Yuxin Wang,Jing Chen
标识
DOI:10.1021/acsami.9b10920
摘要
We report a class of pKa-directed, precise incorporation of phosphonate ligands into a zirconium-based metal-organic framework (Zr-MOF), MOF-808, via ligand exchange. By replacing of formate ligands with methylphosphonic acid (MPA), ethanephosphonic acid (EPA), and vinylphosphonic acid (VPA), whose pKa values are slightly higher than that of the benzenetricarboxylic acid (BTC) linker in MOF-808, daughter MOFs can be synthesized without controlling the stoichiometric amounts of added MPA. The methylphosphonate MOFs (808-MPAs) demonstrate high porosities, with only small changes in the pore diameter and specific surface area when compared with the parent MOF-808. PXRD patterns and structure refinements indicate the expansion of the lattice for all MOFs after decorating with methylphosphonate ligands. The XPS spectra reveal a charge redistribution of the Zr6 node after ligand exchange. FTIR and 31P MAS NMR spectra, combined with DFT calculation, suggest that the methylphosphonate ligand is connected to the Zr6 node as CH3P(O)(OZr)(OH) species with an accessible acidic P-OH group. Besides, 808-MPAs demonstrate excellent chemical stability in concentrated HCl, concentrated HNO3, hot water, and 0.2 mol/L trifluoroacetic acid solutions. Impressively, 808-MPAs show ultrafast adsorption performance for uranyl ions using the ion-exchange property of P-OH sites in their cavity environment, with an equilibrium time of 10 min, much quicker than the previous adsorbents. The present study demonstrates a series of important proof-of-concept examples of the pKa-directed Zr-MOFs with tunable phosphonate-terminated ligands, which can extend to other phosphonate-functionalized Zr-based framework platforms in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI