A survey on ensemble learning

计算机科学 领域(数学) 强化学习 集成学习 多样性(控制论) 背景(考古学) 知识抽取 构造(python库) 基于实例的学习 人工智能 主动学习(机器学习) 机器学习 生物 古生物学 程序设计语言 纯数学 数学
作者
Dong Xibin,Zhiwen Yu,Wenming Cao,Yifan Shi,Qianli Ma
出处
期刊:Frontiers of Computer Science [Higher Education Press]
卷期号:14 (2): 241-258 被引量:1338
标识
DOI:10.1007/s11704-019-8208-z
摘要

Despite significant successes achieved in knowledge discovery, traditional machine learning methods may fail to obtain satisfactory performances when dealing with complex data, such as imbalanced, high-dimensional, noisy data, etc. The reason behind is that it is difficult for these methods to capture multiple characteristics and underlying structure of data. In this context, it becomes an important topic in the data mining field that how to effectively construct an efficient knowledge discovery and mining model. Ensemble learning, as one research hot spot, aims to integrate data fusion, data modeling, and data mining into a unified framework. Specifically, ensemble learning firstly extracts a set of features with a variety of transformations. Based on these learned features, multiple learning algorithms are utilized to produce weak predictive results. Finally, ensemble learning fuses the informative knowledge from the above results obtained to achieve knowledge discovery and better predictive performance via voting schemes in an adaptive way. In this paper, we review the research progress of the mainstream approaches of ensemble learning and classify them based on different characteristics. In addition, we present challenges and possible research directions for each mainstream approach of ensemble learning, and we also give an extra introduction for the combination of ensemble learning with other machine learning hot spots such as deep learning, reinforcement learning, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻语完成签到,获得积分10
刚刚
dfghjkl发布了新的文献求助10
1秒前
大个应助科研混子采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得20
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
斯文败类应助汪汪采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
oriijam应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得30
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
科研通AI5应助oy采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得20
8秒前
今后应助科研通管家采纳,获得50
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
科研通AI5应助风趣安青采纳,获得10
11秒前
caitlin完成签到 ,获得积分10
11秒前
在水一方应助标致小翠采纳,获得10
11秒前
仟惠完成签到,获得积分20
12秒前
洁净艳一发布了新的文献求助10
12秒前
12秒前
ANT完成签到 ,获得积分10
15秒前
医疗实用废物完成签到,获得积分20
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835