过电位
分解水
析氧
材料科学
电化学
催化作用
塔菲尔方程
电解水
镍
电解质
无机化学
氢氧化物
化学工程
层状双氢氧化物
碱性水电解
电解
电极
化学
冶金
物理化学
生物化学
光催化
工程类
作者
Xiaoyi Meng,Junxing Han,Liang Lu,Genrui Qiu,Zhong Lin Wang,Chunwen Sun
出处
期刊:Small
[Wiley]
日期:2019-08-18
卷期号:15 (41)
被引量:143
标识
DOI:10.1002/smll.201902551
摘要
Developing nonprecious electrocatalysts with superior activity and durability for electrochemical water splitting is of great interest but challenging due to the large overpotential required above the thermodynamic standard potential of water splitting (1.23 V). Here, in situ growth of Fe2+ -doped layered double (Ni, Fe) hydroxide (NiFe(II,III)-LDH) on nickel foam with well-defined hexagonal morphology and high crystallinity by a redox reaction between Fe3+ and nickel foam under hydrothermal conditions is reported. Benefiting from tuning the local atomic structure by self-doping Fe2+ , the NiFe(II,III)-LDH catalyst with higher amounts of Fe2+ exhibits high activity toward oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER) activity. Moreover, the optimized NiFe(II,III)-LDH catalyst for OER (O-NiFe(II,III)-LDH) and catalyst for HER (H-NiFe(II,III)-LDH) show overpotentials of 140 and 113 mV, respectively, at a current density of 10 mA cm-2 in 1 m KOH aqueous electrolyte. Using the catalysts for overall water splitting in two-electrode configuration, a low overpotential of just 1.54 V is required at a benchmark current density of 10 mA cm-2 . Furthermore, it is demonstrated that electrolysis of the water device can be drived by a self-powered system through integrating a triboelectric nanogenerator and battery, showing a promising way to realize self-powered electrochemical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI