清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tensor Train Decomposition for Data-Driven Prognosis of Fracture Dynamics in Composite Materials

有限元法 计算机科学 奇异值分解 张量(固有定义) 断裂力学 伽辽金法 矢量化(数学) 代表(政治) 断裂(地质) 张量积 算法 应用数学 结构工程 数学 几何学 材料科学 工程类 复合材料 并行计算 政治 法学 政治学 纯数学
作者
Pham Luu Trung Duong,Nagarajan Raghavan,Shaista Hussain,Mark Hyunpong Jhon
标识
DOI:10.1109/aero47225.2020.9172575
摘要

It is important to be able to accurately predict the evolution of damage in structural components to evaluate the mechanical reliability of engineering structures. This requires modeling complex mechanisms in damage including crack nucleation and propagation. These pose significant computational challenges to simulation, specifically the singular crack tip field as well as the moving boundary problem inherent in crack propagation. In order to address these problems, many different approaches in computational mechanics have been developed including the cohesive zone method, the extended finite element method and the phase-field method, although all these methods are still relatively expensive in computational effort. In order to reduce the computational burden, reduced order models based on the proper orthogonal decomposition (POD) approach can be used to exploit the spatial correlation to get a set of modes characterizing the spatial structure of the model. For the multidimensional problem, there is a need for vectorization of the solution for derivation of the POD modes. This leads to difficulty in explanation of the model. Tensor train (TT) or matrix product states is a better representation of the multidimensional solution using the product of three-dimensional tensors. In this work, the TT methodology is proposed for modeling and predicting the dynamics of fracture in composite materials. We consider a rectangular slab with a pre-existing line crack subject to Mode-I loading condition. Uniaxial strains are applied to the top and bottom edges of the slab. The phase-field method (PFM) with finite-difference (FD) is used for generating the high dimensional data for training the TT method. The predictions using the TT method are then compared with the results from the finite difference method with phase-field to verify the correctness of the TT. Our results show that the TT can predict the crack growth trends based on the finite difference method with an accuracy of 95-98% while reducing the computational load by up to 2–5 orders of magnitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxq完成签到 ,获得积分10
3秒前
6秒前
什么时候可以睡觉完成签到,获得积分10
15秒前
22秒前
Moto_Fang完成签到,获得积分10
25秒前
邓洁宜完成签到,获得积分10
27秒前
QCB完成签到 ,获得积分0
38秒前
从来都不会放弃zr完成签到,获得积分10
39秒前
鲤鱼山人完成签到 ,获得积分10
59秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
研友_n2rRqn完成签到 ,获得积分10
1分钟前
2分钟前
RC发布了新的文献求助30
2分钟前
BowieHuang应助大盆采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
什么时候可以睡觉关注了科研通微信公众号
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
森sen完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
聪明怜阳发布了新的文献求助10
4分钟前
酷然完成签到,获得积分10
4分钟前
我是老大应助聪明怜阳采纳,获得10
4分钟前
alex12259完成签到 ,获得积分10
4分钟前
情怀应助RC采纳,获得10
4分钟前
5分钟前
RC发布了新的文献求助10
5分钟前
trophozoite完成签到 ,获得积分10
5分钟前
5分钟前
0m0完成签到 ,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高贵菲菲完成签到,获得积分10
6分钟前
高贵菲菲发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590599
求助须知:如何正确求助?哪些是违规求助? 4674849
关于积分的说明 14795392
捐赠科研通 4633881
什么是DOI,文献DOI怎么找? 2532863
邀请新用户注册赠送积分活动 1501348
关于科研通互助平台的介绍 1468741