Tensor Train Decomposition for Data-Driven Prognosis of Fracture Dynamics in Composite Materials

有限元法 计算机科学 奇异值分解 张量(固有定义) 断裂力学 伽辽金法 矢量化(数学) 代表(政治) 断裂(地质) 张量积 算法 应用数学 结构工程 数学 几何学 材料科学 工程类 政治 复合材料 并行计算 政治学 法学 纯数学
作者
Pham Luu Trung Duong,Nagarajan Raghavan,Shaista Hussain,Mark Hyunpong Jhon
标识
DOI:10.1109/aero47225.2020.9172575
摘要

It is important to be able to accurately predict the evolution of damage in structural components to evaluate the mechanical reliability of engineering structures. This requires modeling complex mechanisms in damage including crack nucleation and propagation. These pose significant computational challenges to simulation, specifically the singular crack tip field as well as the moving boundary problem inherent in crack propagation. In order to address these problems, many different approaches in computational mechanics have been developed including the cohesive zone method, the extended finite element method and the phase-field method, although all these methods are still relatively expensive in computational effort. In order to reduce the computational burden, reduced order models based on the proper orthogonal decomposition (POD) approach can be used to exploit the spatial correlation to get a set of modes characterizing the spatial structure of the model. For the multidimensional problem, there is a need for vectorization of the solution for derivation of the POD modes. This leads to difficulty in explanation of the model. Tensor train (TT) or matrix product states is a better representation of the multidimensional solution using the product of three-dimensional tensors. In this work, the TT methodology is proposed for modeling and predicting the dynamics of fracture in composite materials. We consider a rectangular slab with a pre-existing line crack subject to Mode-I loading condition. Uniaxial strains are applied to the top and bottom edges of the slab. The phase-field method (PFM) with finite-difference (FD) is used for generating the high dimensional data for training the TT method. The predictions using the TT method are then compared with the results from the finite difference method with phase-field to verify the correctness of the TT. Our results show that the TT can predict the crack growth trends based on the finite difference method with an accuracy of 95-98% while reducing the computational load by up to 2–5 orders of magnitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
新雨发布了新的文献求助10
1秒前
1秒前
啦啦啦发布了新的文献求助10
1秒前
zl12345发布了新的文献求助10
1秒前
大地发布了新的文献求助10
2秒前
2秒前
炸裂的乌龟完成签到 ,获得积分10
2秒前
一颗小纽扣完成签到,获得积分10
2秒前
6秒前
ww发布了新的文献求助10
6秒前
ding应助xiaoyanyan采纳,获得10
7秒前
lby完成签到 ,获得积分10
8秒前
8秒前
啦啦啦发布了新的文献求助10
9秒前
9秒前
10秒前
123456完成签到,获得积分10
11秒前
SciGPT应助啦啦啦采纳,获得10
11秒前
酷波er应助坚定的平松采纳,获得10
12秒前
13秒前
13秒前
高yq发布了新的文献求助20
14秒前
大卫在分享应助tang采纳,获得10
14秒前
14秒前
14秒前
14秒前
GAO完成签到,获得积分10
15秒前
善学以致用应助酷酷从雪采纳,获得10
15秒前
传奇3应助斯文的傲珊采纳,获得10
16秒前
16秒前
yanxuhuan发布了新的文献求助10
16秒前
花园荆棘发布了新的文献求助10
18秒前
qqq完成签到,获得积分20
19秒前
111完成签到,获得积分10
19秒前
20秒前
20秒前
在水一方应助tingfeng采纳,获得200
20秒前
xiaoyanyan发布了新的文献求助10
20秒前
大卫在分享应助tang采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145115
求助须知:如何正确求助?哪些是违规求助? 2796489
关于积分的说明 7819996
捐赠科研通 2452771
什么是DOI,文献DOI怎么找? 1305202
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449