Tensor Train Decomposition for Data-Driven Prognosis of Fracture Dynamics in Composite Materials

有限元法 计算机科学 奇异值分解 张量(固有定义) 断裂力学 伽辽金法 矢量化(数学) 代表(政治) 断裂(地质) 张量积 算法 应用数学 结构工程 数学 几何学 材料科学 工程类 政治 复合材料 并行计算 政治学 法学 纯数学
作者
Pham Luu Trung Duong,Nagarajan Raghavan,Shaista Hussain,Mark Hyunpong Jhon
标识
DOI:10.1109/aero47225.2020.9172575
摘要

It is important to be able to accurately predict the evolution of damage in structural components to evaluate the mechanical reliability of engineering structures. This requires modeling complex mechanisms in damage including crack nucleation and propagation. These pose significant computational challenges to simulation, specifically the singular crack tip field as well as the moving boundary problem inherent in crack propagation. In order to address these problems, many different approaches in computational mechanics have been developed including the cohesive zone method, the extended finite element method and the phase-field method, although all these methods are still relatively expensive in computational effort. In order to reduce the computational burden, reduced order models based on the proper orthogonal decomposition (POD) approach can be used to exploit the spatial correlation to get a set of modes characterizing the spatial structure of the model. For the multidimensional problem, there is a need for vectorization of the solution for derivation of the POD modes. This leads to difficulty in explanation of the model. Tensor train (TT) or matrix product states is a better representation of the multidimensional solution using the product of three-dimensional tensors. In this work, the TT methodology is proposed for modeling and predicting the dynamics of fracture in composite materials. We consider a rectangular slab with a pre-existing line crack subject to Mode-I loading condition. Uniaxial strains are applied to the top and bottom edges of the slab. The phase-field method (PFM) with finite-difference (FD) is used for generating the high dimensional data for training the TT method. The predictions using the TT method are then compared with the results from the finite difference method with phase-field to verify the correctness of the TT. Our results show that the TT can predict the crack growth trends based on the finite difference method with an accuracy of 95-98% while reducing the computational load by up to 2–5 orders of magnitude.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铝离子发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
2秒前
ZHY完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
毛毛弟发布了新的文献求助10
3秒前
3秒前
若水完成签到 ,获得积分10
4秒前
14999发布了新的文献求助10
4秒前
Tina完成签到,获得积分10
4秒前
SMULJL完成签到 ,获得积分10
5秒前
5秒前
大气石头完成签到,获得积分10
5秒前
6秒前
狂野忆文发布了新的文献求助10
6秒前
lingo完成签到 ,获得积分10
7秒前
7秒前
yellow完成签到 ,获得积分10
7秒前
8秒前
tomato的痛苦你不知道完成签到,获得积分10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
狂野忆文发布了新的文献求助10
8秒前
you完成签到,获得积分10
9秒前
陳.发布了新的文献求助10
9秒前
Lc完成签到,获得积分10
9秒前
堀江真夏完成签到 ,获得积分10
10秒前
浅池星完成签到 ,获得积分10
10秒前
铝离子完成签到,获得积分10
10秒前
李明涵完成签到 ,获得积分10
10秒前
MchemG应助机智的一笑采纳,获得10
11秒前
月亮上的猫完成签到,获得积分10
11秒前
如初完成签到,获得积分10
11秒前
11秒前
勤恳曼卉发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027