群体行为
纳米棒
图案形成
纳米技术
群机器人
计算机科学
生物系统
材料科学
群体智能
粒子群优化
人工智能
算法
生物
遗传学
作者
Xingzhou Du,Jiangfan Yu,Dongdong Jin,Philip Wai Yan Chiu,Li Zhang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-02-18
卷期号:15 (3): 4429-4439
被引量:39
标识
DOI:10.1021/acsnano.0c08284
摘要
Natural swarms can be formed by various creatures. The swarms can conduct demanded behaviors to adapt to their living environments, such as passing through harsh terrains and protecting each other from predators. At micrometer and nanometer scales, formation of a swarm pattern relies on the physical or chemical interactions between the agents owing to the absence of an on-board device. Independent pattern formation of different swarms, especially under the same input, is a more challenging task. In this work, a swarm of nickel nanorods is proposed and by exploiting its different behavior with the nanoparticle swarm, independent pattern formation of diverse microrobotic swarms under the same environment can be conducted. A mathematical model for the nanorod swarm is constructed, and the mechanism is illustrated. Two-region pattern changing of the nanorod swarm is discovered and compared with the one-region property of the nanoparticle swarm. Experimental characterization of the nanorod swarm pattern is conducted to prove the concept and validate the effectiveness of the theoretical analysis. Furthermore, independent pattern formation of different microrobotic swarms was demonstrated. The pattern of the nanorod swarm could be adjusted while the other swarm was kept unchanged. Simultaneous pattern changing of two swarms was achieved as well. As a fundamental research on the microrobotic swarm, this work presents how the nanoscale magnetic anisotropy of building agents affects their macroscopic swarm behaviors and promotes further development on the independent control of microrobotic swarms under a global field input.
科研通智能强力驱动
Strongly Powered by AbleSci AI