Where to locate COVID‐19 mass vaccination facilities?

接种疫苗 大流行 计算机科学 大规模疫苗接种 2019年冠状病毒病(COVID-19) 运筹学 病毒学 医学 数学 疾病 病理 传染病(医学专业)
作者
Dimitris Bertsimas,Vassilis Digalakis,Alexander Jacquillat,Michael Lingzhi Li,Alessandro Previero
出处
期刊:Naval Research Logistics [Wiley]
卷期号:69 (2): 179-200 被引量:21
标识
DOI:10.1002/nav.22007
摘要

The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new Biden administration is launching mass vaccination sites across the country, raising the obvious question of where to locate these clinics to maximize the effectiveness of the vaccination campaign. This paper tackles this question with a novel data-driven approach to optimize COVID-19 vaccine distribution. We first augment a state-of-the-art epidemiological model, called DELPHI, to capture the effects of vaccinations and the variability in mortality rates across age groups. We then integrate this predictive model into a prescriptive model to optimize the location of vaccination sites and subsequent vaccine allocation. The model is formulated as a bilinear, nonconvex optimization model. To solve it, we propose a coordinate descent algorithm that iterates between optimizing vaccine distribution and simulating the dynamics of the pandemic. As compared to benchmarks based on demographic and epidemiological information, the proposed optimization approach increases the effectiveness of the vaccination campaign by an estimated 20%, saving an extra 4000 extra lives in the United States over a 3-month period. The proposed solution achieves critical fairness objectives-by reducing the death toll of the pandemic in several states without hurting others-and is highly robust to uncertainties and forecast errors-by achieving similar benefits under a vast range of perturbations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽翩跹发布了新的文献求助10
刚刚
XudongHou发布了新的文献求助20
刚刚
1秒前
Zz发布了新的文献求助10
1秒前
qq发布了新的文献求助10
1秒前
听闻墨笙完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助猪肉铺采纳,获得10
3秒前
易义德发布了新的文献求助10
3秒前
大方擎完成签到,获得积分10
3秒前
wangshibing完成签到,获得积分10
4秒前
gy完成签到 ,获得积分20
4秒前
满三江完成签到,获得积分10
5秒前
李丽冰完成签到,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
封听白发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
lalala应助科研通管家采纳,获得20
5秒前
1+1应助科研通管家采纳,获得10
5秒前
穆辰应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
穆辰应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
劲秉应助科研通管家采纳,获得30
5秒前
lily发布了新的文献求助10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
穆辰应助科研通管家采纳,获得10
6秒前
en应助科研通管家采纳,获得200
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206210
求助须知:如何正确求助?哪些是违规求助? 2855622
关于积分的说明 8100302
捐赠科研通 2520593
什么是DOI,文献DOI怎么找? 1353618
科研通“疑难数据库(出版商)”最低求助积分说明 641806
邀请新用户注册赠送积分活动 612874