Where to locate COVID‐19 mass vaccination facilities?

接种疫苗 大流行 计算机科学 大规模疫苗接种 2019年冠状病毒病(COVID-19) 运筹学 病毒学 医学 数学 病理 传染病(医学专业) 疾病
作者
Dimitris Bertsimas,Vassilis Digalakis,Alexander Jacquillat,Michael Lingzhi Li,Alessandro Previero
出处
期刊:Naval Research Logistics [Wiley]
卷期号:69 (2): 179-200 被引量:21
标识
DOI:10.1002/nav.22007
摘要

The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new Biden administration is launching mass vaccination sites across the country, raising the obvious question of where to locate these clinics to maximize the effectiveness of the vaccination campaign. This paper tackles this question with a novel data-driven approach to optimize COVID-19 vaccine distribution. We first augment a state-of-the-art epidemiological model, called DELPHI, to capture the effects of vaccinations and the variability in mortality rates across age groups. We then integrate this predictive model into a prescriptive model to optimize the location of vaccination sites and subsequent vaccine allocation. The model is formulated as a bilinear, nonconvex optimization model. To solve it, we propose a coordinate descent algorithm that iterates between optimizing vaccine distribution and simulating the dynamics of the pandemic. As compared to benchmarks based on demographic and epidemiological information, the proposed optimization approach increases the effectiveness of the vaccination campaign by an estimated 20%, saving an extra 4000 extra lives in the United States over a 3-month period. The proposed solution achieves critical fairness objectives-by reducing the death toll of the pandemic in several states without hurting others-and is highly robust to uncertainties and forecast errors-by achieving similar benefits under a vast range of perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳完成签到 ,获得积分10
1秒前
1秒前
2秒前
orixero应助锅锅采纳,获得10
2秒前
木木完成签到 ,获得积分10
2秒前
3秒前
。。。发布了新的文献求助10
4秒前
打打应助Luo采纳,获得30
4秒前
4秒前
汉堡包应助王文杰采纳,获得10
4秒前
5秒前
积极幻桃关注了科研通微信公众号
5秒前
周美玉完成签到,获得积分10
6秒前
6秒前
7秒前
小远发布了新的文献求助10
7秒前
SYLH应助肥肥采纳,获得20
7秒前
starry发布了新的文献求助10
7秒前
8秒前
8秒前
熊二发布了新的文献求助10
8秒前
迷路小丸子完成签到,获得积分10
8秒前
斯文发布了新的文献求助10
9秒前
田様应助肉肉采纳,获得10
9秒前
闪闪茉莉关注了科研通微信公众号
10秒前
上官若男应助nylon采纳,获得10
10秒前
张暖暖完成签到,获得积分10
11秒前
在水一方应助一一采纳,获得30
11秒前
11秒前
Boxcc完成签到 ,获得积分10
11秒前
77发布了新的文献求助10
12秒前
zbyan发布了新的文献求助10
12秒前
13秒前
daheeeee发布了新的文献求助10
13秒前
14秒前
大个应助恐怖稽器人采纳,获得10
14秒前
wjay发布了新的文献求助10
14秒前
深情安青应助shaylie采纳,获得10
14秒前
16秒前
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232