Where to locate COVID‐19 mass vaccination facilities?

接种疫苗 大流行 计算机科学 大规模疫苗接种 2019年冠状病毒病(COVID-19) 运筹学 病毒学 医学 数学 病理 传染病(医学专业) 疾病
作者
Dimitris Bertsimas,Vassilis Digalakis,Alexander Jacquillat,Michael Lingzhi Li,Alessandro Previero
出处
期刊:Naval Research Logistics [Wiley]
卷期号:69 (2): 179-200 被引量:21
标识
DOI:10.1002/nav.22007
摘要

The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new Biden administration is launching mass vaccination sites across the country, raising the obvious question of where to locate these clinics to maximize the effectiveness of the vaccination campaign. This paper tackles this question with a novel data-driven approach to optimize COVID-19 vaccine distribution. We first augment a state-of-the-art epidemiological model, called DELPHI, to capture the effects of vaccinations and the variability in mortality rates across age groups. We then integrate this predictive model into a prescriptive model to optimize the location of vaccination sites and subsequent vaccine allocation. The model is formulated as a bilinear, nonconvex optimization model. To solve it, we propose a coordinate descent algorithm that iterates between optimizing vaccine distribution and simulating the dynamics of the pandemic. As compared to benchmarks based on demographic and epidemiological information, the proposed optimization approach increases the effectiveness of the vaccination campaign by an estimated 20%, saving an extra 4000 extra lives in the United States over a 3-month period. The proposed solution achieves critical fairness objectives-by reducing the death toll of the pandemic in several states without hurting others-and is highly robust to uncertainties and forecast errors-by achieving similar benefits under a vast range of perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季生完成签到,获得积分10
2秒前
徐徐完成签到,获得积分10
2秒前
3秒前
3秒前
haku完成签到,获得积分10
5秒前
可爱的函函应助laodie采纳,获得10
7秒前
Singularity应助忆楠采纳,获得10
8秒前
9秒前
请叫我风吹麦浪应助PengHu采纳,获得30
10秒前
jjjjjj完成签到,获得积分10
10秒前
凝子老师发布了新的文献求助10
12秒前
12秒前
橙子fy16_发布了新的文献求助10
14秒前
cookie完成签到,获得积分10
14秒前
柒柒的小熊完成签到,获得积分10
15秒前
15秒前
Hello应助萌之痴痴采纳,获得10
16秒前
hahaer完成签到,获得积分10
18秒前
领导范儿应助失眠虔纹采纳,获得10
19秒前
20秒前
Owen应助凝子老师采纳,获得10
23秒前
23秒前
南宫炽滔完成签到 ,获得积分10
25秒前
25秒前
丘比特应助飞羽采纳,获得10
26秒前
沙拉发布了新的文献求助10
26秒前
27秒前
28秒前
椰子糖完成签到 ,获得积分10
29秒前
29秒前
ZHU完成签到,获得积分10
30秒前
阳阳发布了新的文献求助10
31秒前
Raymond应助雪山飞龙采纳,获得10
31秒前
kk发布了新的文献求助10
32秒前
32秒前
33秒前
33秒前
33秒前
34秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849