Where to locate COVID‐19 mass vaccination facilities?

接种疫苗 大流行 计算机科学 大规模疫苗接种 2019年冠状病毒病(COVID-19) 运筹学 病毒学 医学 数学 病理 传染病(医学专业) 疾病
作者
Dimitris Bertsimas,Vassilis Digalakis,Alexander Jacquillat,Michael Lingzhi Li,Alessandro Previero
出处
期刊:Naval Research Logistics [Wiley]
卷期号:69 (2): 179-200 被引量:21
标识
DOI:10.1002/nav.22007
摘要

The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new Biden administration is launching mass vaccination sites across the country, raising the obvious question of where to locate these clinics to maximize the effectiveness of the vaccination campaign. This paper tackles this question with a novel data-driven approach to optimize COVID-19 vaccine distribution. We first augment a state-of-the-art epidemiological model, called DELPHI, to capture the effects of vaccinations and the variability in mortality rates across age groups. We then integrate this predictive model into a prescriptive model to optimize the location of vaccination sites and subsequent vaccine allocation. The model is formulated as a bilinear, nonconvex optimization model. To solve it, we propose a coordinate descent algorithm that iterates between optimizing vaccine distribution and simulating the dynamics of the pandemic. As compared to benchmarks based on demographic and epidemiological information, the proposed optimization approach increases the effectiveness of the vaccination campaign by an estimated 20%, saving an extra 4000 extra lives in the United States over a 3-month period. The proposed solution achieves critical fairness objectives-by reducing the death toll of the pandemic in several states without hurting others-and is highly robust to uncertainties and forecast errors-by achieving similar benefits under a vast range of perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12发布了新的文献求助10
刚刚
刚刚
YYR发布了新的文献求助10
刚刚
隐形曼青应助milos采纳,获得10
1秒前
1秒前
張肉肉发布了新的文献求助10
2秒前
Yallabo发布了新的文献求助200
3秒前
qwertyu111发布了新的文献求助10
3秒前
ethanxiang发布了新的文献求助20
5秒前
Lurant完成签到,获得积分10
6秒前
复杂的茉莉完成签到,获得积分10
6秒前
6秒前
6秒前
眼睛大的冰蓝完成签到,获得积分10
7秒前
8秒前
沐晴完成签到,获得积分10
10秒前
tsumugi发布了新的文献求助10
10秒前
hk发布了新的文献求助10
11秒前
12秒前
Owen应助冬不拉的红糖纸采纳,获得10
12秒前
ding应助Hoolyshit采纳,获得10
12秒前
12秒前
刘骁萱完成签到 ,获得积分10
13秒前
鲤鱼灵波完成签到,获得积分20
14秒前
15秒前
谢天遇你发布了新的文献求助10
15秒前
15秒前
深情安青应助直率的珍采纳,获得10
16秒前
大意的小小完成签到 ,获得积分10
16秒前
璩qu发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
Orange应助吴华余采纳,获得10
19秒前
19秒前
科研通AI6应助小新采纳,获得10
19秒前
了晨完成签到 ,获得积分10
20秒前
scjgf完成签到 ,获得积分10
20秒前
脑洞疼应助qwertyu111采纳,获得10
20秒前
20秒前
满意的伊发布了新的文献求助10
22秒前
香蕉觅云应助心信鑫采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091