吸附
氟化物
锌熔炼
环境修复
废水
工业废水处理
化学
絮凝作用
材料科学
流出物
冶炼
废物管理
化学工程
环境科学
制浆造纸工业
冶金
环境工程
无机化学
污染
有机化学
工程类
生态学
生物
作者
Kuilin Wan,Lei Huang,Jia Yan,Boyan Ma,Xuanjie Huang,Zhixuan Luo,Hongguo Zhang,Tangfu Xiao
标识
DOI:10.1016/j.scitotenv.2021.145535
摘要
Many industries such as iron and steel metallurgy, copper and zinc smelting, the battery industry, and cement manufacturing industries discharge high concentrations of fluoride-containing wastewater into the environment. Subsequently, the discharge of high fluoride effluent serves as a threat to human life as well as the ecological ability to sustain life. This article analyses the advantages and drawbacks of some fluoride remediation technologies such as precipitation and flocculation, membrane technology, ion exchange technology, and adsorption technology. Among them, adsorption technology is considered the obvious choice and the best applicable technology. As such, several adsorbents with high fluoride adsorption capacity such as modified alumina, metal oxides, biomass, carbon-based materials, metal-organic frameworks, and other adsorption materials including their characteristics have been comprehensively summarized. Additionally, different adsorption conditions of the various adsorbents, such as pH, temperature, initial fluoride concentration, and contact time have been discussed in detail. The study found out that the composite synergy between different materials, morphological and structural control, and the strengthening of their functional groups can effectively improve the ability of the adsorbents for removing fluoride. This study has prospected the direction of various adsorbents for removing fluoride in wastewater, which would serve as guiding significance for future research in the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI