Direct Fidelity Estimation of Quantum States Using Machine Learning.

计算机科学 量子机器学习 忠诚 量子 高保真 人工智能 算法 机器学习 量子位元 量子态 量子计算机 统计物理学 物理 深度学习 量子算法 量子信息
作者
X. B. Zhang,Maolin Luo,Zhaodi Wen,Qin Feng,Shengshi Pang,Weiqi Luo,Xiao-Qi Zhou
出处
期刊:Physical Review Letters [American Physical Society]
卷期号:127 (13): 130503- 被引量:1
标识
DOI:10.1103/physrevlett.127.130503
摘要

In almost all quantum applications, one of the key steps is to verify that the fidelity of the prepared quantum state meets expectations. In this Letter, we propose a new approach solving this problem using machine-learning techniques. Compared to other fidelity estimation methods, our method is applicable to arbitrary quantum states, the number of required measurement settings is small, and this number does not increase with the size of the system. For example, for a general five-qubit quantum state, only four measurement settings are required to predict its fidelity with $\ifmmode\pm\else\textpm\fi{}1%$ precision in a nonadversarial scenario. This machine-learning-based approach for estimating quantum state fidelity has the potential to be widely used in the field of quantum information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BaiX完成签到,获得积分10
刚刚
刚刚
顾矜应助ttssooe采纳,获得10
刚刚
1秒前
共享精神应助罗mian采纳,获得10
1秒前
亭语完成签到 ,获得积分0
2秒前
重要清涟完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
BaiX发布了新的文献求助10
3秒前
3秒前
路旁小白完成签到,获得积分10
3秒前
枫桥完成签到 ,获得积分10
3秒前
彭于晏应助zhonghbush采纳,获得10
4秒前
秦玉蓉完成签到,获得积分10
4秒前
小文cremen完成签到 ,获得积分10
5秒前
Owen应助千里采纳,获得10
6秒前
o10发布了新的文献求助10
6秒前
MADKAI发布了新的文献求助10
6秒前
紧张的梦岚应助开放雁丝采纳,获得20
6秒前
淇淇怪怪发布了新的文献求助10
7秒前
深情安青应助呼叫554采纳,获得30
7秒前
zhuiyu完成签到,获得积分10
7秒前
鲜艳的手链完成签到,获得积分10
7秒前
知性的以筠完成签到,获得积分10
8秒前
leiyang49完成签到,获得积分10
8秒前
8秒前
李小伟完成签到,获得积分10
9秒前
9秒前
铁匠发布了新的文献求助10
10秒前
Jupiter完成签到,获得积分10
10秒前
zsqqqqq完成签到,获得积分10
12秒前
MADKAI发布了新的文献求助10
12秒前
二二二发布了新的文献求助10
12秒前
完美世界应助nihil采纳,获得10
13秒前
13秒前
cd发布了新的文献求助10
13秒前
过时的丹秋完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672