已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram

医学 QT间期 长QT综合征 心脏病学 心电图 内科学 心源性猝死 卷积神经网络 人工智能 计算机科学
作者
J. Martijn Bos,Zachi I. Attia,David E. Albert,Peter A. Noseworthy,Paul A. Friedman,Michael J. Ackerman
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (5): 532-532 被引量:56
标识
DOI:10.1001/jamacardio.2020.7422
摘要

Long QT syndrome (LQTS) is characterized by prolongation of the QT interval and is associated with an increased risk of sudden cardiac death. However, although QT interval prolongation is the hallmark feature of LQTS, approximately 40% of patients with genetically confirmed LQTS have a normal corrected QT (QTc) at rest. Distinguishing patients with LQTS from those with a normal QTc is important to correctly diagnose disease, implement simple LQTS preventive measures, and initiate prophylactic therapy if necessary.To determine whether artificial intelligence (AI) using deep neural networks is better than the QTc alone in distinguishing patients with concealed LQTS from those with a normal QTc using a 12-lead electrocardiogram (ECG).A diagnostic case-control study was performed using all available 12-lead ECGs from 2059 patients presenting to a specialized genetic heart rhythm clinic. Patients were included if they had a definitive clinical and/or genetic diagnosis of type 1, 2, or 3 LQTS (LQT1, 2, or 3) or were seen because of an initial suspicion for LQTS but were discharged without this diagnosis. A multilayer convolutional neural network was used to classify patients based on a 10-second, 12-lead ECG, AI-enhanced ECG (AI-ECG). The convolutional neural network was trained using 60% of the patients, validated in 10% of the patients, and tested on the remaining patients (30%). The study was conducted from January 1, 1999, to December 31, 2018.The goal of the study was to test the ability of the convolutional neural network to distinguish patients with LQTS from those who were evaluated for LQTS but discharged without this diagnosis, especially among patients with genetically confirmed LQTS but a normal QTc value at rest (referred to as genotype positive/phenotype negative LQTS, normal QT interval LQTS, or concealed LQTS).Of the 2059 patients included, 1180 were men (57%); mean (SD) age at first ECG was 21.6 (15.6) years. All 12-lead ECGs from 967 patients with LQTS and 1092 who were evaluated for LQTS but discharged without this diagnosis were included for AI-ECG analysis. Based on the ECG-derived QTc alone, patients were classified with an area under the curve (AUC) value of 0.824 (95% CI, 0.79-0.858); using AI-ECG, the AUC was 0.900 (95% CI, 0.876-0.925). Furthermore, in the subset of patients who had a normal resting QTc (<450 milliseconds), the QTc alone distinguished those with LQTS from those without LQTS with an AUC of 0.741 (95% CI, 0.689-0.794), whereas the AI-ECG increased this discrimination to an AUC of 0.863 (95% CI, 0.824-0.903). In addition, the AI-ECG was able to distinguish the 3 main genotypic subgroups (LQT1, LQT2, and LQT3) with an AUC of 0.921 (95% CI, 0.890-0.951) for LQT1 compared with LQT2 and 3, 0.944 (95% CI, 0.918-0.970) for LQT2 compared with LQT1 and 3, and 0.863 (95% CI, 0.792-0.934) for LQT3 compared with LQT1 and 2.In this study, the AI-ECG was found to distinguish patients with electrocardiographically concealed LQTS from those discharged without a diagnosis of LQTS and provide a nearly 80% accurate pregenetic test anticipation of LQTS genotype status. This model may aid in the detection of LQTS in patients presenting to an arrhythmia clinic and, with validation, may be the stepping stone to similar tools to be developed for use in the general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的谷丝完成签到,获得积分10
1秒前
jozz完成签到 ,获得积分10
3秒前
小鱼儿完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
eric888应助科研通管家采纳,获得100
4秒前
loen完成签到,获得积分10
9秒前
TTTTTT完成签到,获得积分10
10秒前
10秒前
wy.he应助春天先生采纳,获得10
11秒前
ying818k完成签到 ,获得积分10
15秒前
紧张的以山完成签到,获得积分10
18秒前
小哥881212完成签到,获得积分10
20秒前
开霁完成签到 ,获得积分10
25秒前
wintersss完成签到,获得积分10
27秒前
fly完成签到 ,获得积分10
33秒前
充满怪兽的世界完成签到,获得积分10
35秒前
CipherSage应助zzc采纳,获得10
36秒前
脑洞疼应助肖笑笑采纳,获得10
38秒前
Fischl完成签到 ,获得积分10
40秒前
42秒前
小哥881212发布了新的文献求助10
42秒前
suxili完成签到 ,获得积分10
44秒前
52秒前
sunnn完成签到 ,获得积分10
56秒前
冷傲的薯片完成签到,获得积分10
57秒前
yulian发布了新的文献求助10
59秒前
galaxy完成签到 ,获得积分10
1分钟前
tejing1158完成签到 ,获得积分10
1分钟前
能干觅夏完成签到 ,获得积分10
1分钟前
Aaron完成签到 ,获得积分10
1分钟前
Zeno完成签到 ,获得积分10
1分钟前
TY完成签到 ,获得积分10
1分钟前
Dawn13443完成签到,获得积分20
1分钟前
嗯很好完成签到,获得积分10
1分钟前
勤奋的凌翠完成签到 ,获得积分10
1分钟前
hj456发布了新的文献求助10
1分钟前
hj456完成签到,获得积分10
1分钟前
Lyl完成签到 ,获得积分10
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176