Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram

医学 QT间期 长QT综合征 心脏病学 心电图 内科学 心源性猝死 卷积神经网络 人工智能 计算机科学
作者
J. Martijn Bos,Zachi I. Attia,David E. Albert,Peter A. Noseworthy,Paul A. Friedman,Michael J. Ackerman
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (5): 532-532 被引量:56
标识
DOI:10.1001/jamacardio.2020.7422
摘要

Long QT syndrome (LQTS) is characterized by prolongation of the QT interval and is associated with an increased risk of sudden cardiac death. However, although QT interval prolongation is the hallmark feature of LQTS, approximately 40% of patients with genetically confirmed LQTS have a normal corrected QT (QTc) at rest. Distinguishing patients with LQTS from those with a normal QTc is important to correctly diagnose disease, implement simple LQTS preventive measures, and initiate prophylactic therapy if necessary.To determine whether artificial intelligence (AI) using deep neural networks is better than the QTc alone in distinguishing patients with concealed LQTS from those with a normal QTc using a 12-lead electrocardiogram (ECG).A diagnostic case-control study was performed using all available 12-lead ECGs from 2059 patients presenting to a specialized genetic heart rhythm clinic. Patients were included if they had a definitive clinical and/or genetic diagnosis of type 1, 2, or 3 LQTS (LQT1, 2, or 3) or were seen because of an initial suspicion for LQTS but were discharged without this diagnosis. A multilayer convolutional neural network was used to classify patients based on a 10-second, 12-lead ECG, AI-enhanced ECG (AI-ECG). The convolutional neural network was trained using 60% of the patients, validated in 10% of the patients, and tested on the remaining patients (30%). The study was conducted from January 1, 1999, to December 31, 2018.The goal of the study was to test the ability of the convolutional neural network to distinguish patients with LQTS from those who were evaluated for LQTS but discharged without this diagnosis, especially among patients with genetically confirmed LQTS but a normal QTc value at rest (referred to as genotype positive/phenotype negative LQTS, normal QT interval LQTS, or concealed LQTS).Of the 2059 patients included, 1180 were men (57%); mean (SD) age at first ECG was 21.6 (15.6) years. All 12-lead ECGs from 967 patients with LQTS and 1092 who were evaluated for LQTS but discharged without this diagnosis were included for AI-ECG analysis. Based on the ECG-derived QTc alone, patients were classified with an area under the curve (AUC) value of 0.824 (95% CI, 0.79-0.858); using AI-ECG, the AUC was 0.900 (95% CI, 0.876-0.925). Furthermore, in the subset of patients who had a normal resting QTc (<450 milliseconds), the QTc alone distinguished those with LQTS from those without LQTS with an AUC of 0.741 (95% CI, 0.689-0.794), whereas the AI-ECG increased this discrimination to an AUC of 0.863 (95% CI, 0.824-0.903). In addition, the AI-ECG was able to distinguish the 3 main genotypic subgroups (LQT1, LQT2, and LQT3) with an AUC of 0.921 (95% CI, 0.890-0.951) for LQT1 compared with LQT2 and 3, 0.944 (95% CI, 0.918-0.970) for LQT2 compared with LQT1 and 3, and 0.863 (95% CI, 0.792-0.934) for LQT3 compared with LQT1 and 2.In this study, the AI-ECG was found to distinguish patients with electrocardiographically concealed LQTS from those discharged without a diagnosis of LQTS and provide a nearly 80% accurate pregenetic test anticipation of LQTS genotype status. This model may aid in the detection of LQTS in patients presenting to an arrhythmia clinic and, with validation, may be the stepping stone to similar tools to be developed for use in the general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过机器猫完成签到,获得积分20
刚刚
蜗牛发布了新的文献求助20
刚刚
1秒前
甜甜访曼完成签到,获得积分10
1秒前
顾矜应助bong采纳,获得10
1秒前
小D发布了新的文献求助20
2秒前
2秒前
可爱的函函应助zinchhh采纳,获得30
4秒前
4秒前
pzk发布了新的文献求助10
5秒前
美满曼岚完成签到,获得积分10
5秒前
里里发布了新的文献求助10
5秒前
米酒完成签到 ,获得积分10
5秒前
asdfggg发布了新的文献求助10
5秒前
5秒前
abc发布了新的文献求助10
5秒前
6秒前
6秒前
lucky完成签到,获得积分10
7秒前
8秒前
8秒前
10秒前
bong完成签到,获得积分10
10秒前
11秒前
cwq15963完成签到,获得积分20
11秒前
12秒前
脑洞疼应助KID采纳,获得10
12秒前
orixero应助张家璐采纳,获得10
12秒前
sk发布了新的文献求助20
12秒前
ccc完成签到 ,获得积分10
12秒前
zgd发布了新的文献求助10
12秒前
13秒前
13秒前
Mortal完成签到,获得积分10
13秒前
Annnnnnnnnn发布了新的文献求助10
14秒前
cwq15963发布了新的文献求助10
16秒前
爆米花应助孙大圣采纳,获得10
17秒前
abc完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229041
求助须知:如何正确求助?哪些是违规求助? 2876786
关于积分的说明 8196563
捐赠科研通 2544175
什么是DOI,文献DOI怎么找? 1374187
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621640