亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram

医学 QT间期 长QT综合征 心脏病学 心电图 内科学 心源性猝死 卷积神经网络 人工智能 计算机科学
作者
J. Martijn Bos,Zachi I. Attia,D.J. Albert,Peter A. Noseworthy,Paul A. Friedman,Michael J. Ackerman
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (5): 532-532 被引量:109
标识
DOI:10.1001/jamacardio.2020.7422
摘要

Long QT syndrome (LQTS) is characterized by prolongation of the QT interval and is associated with an increased risk of sudden cardiac death. However, although QT interval prolongation is the hallmark feature of LQTS, approximately 40% of patients with genetically confirmed LQTS have a normal corrected QT (QTc) at rest. Distinguishing patients with LQTS from those with a normal QTc is important to correctly diagnose disease, implement simple LQTS preventive measures, and initiate prophylactic therapy if necessary.To determine whether artificial intelligence (AI) using deep neural networks is better than the QTc alone in distinguishing patients with concealed LQTS from those with a normal QTc using a 12-lead electrocardiogram (ECG).A diagnostic case-control study was performed using all available 12-lead ECGs from 2059 patients presenting to a specialized genetic heart rhythm clinic. Patients were included if they had a definitive clinical and/or genetic diagnosis of type 1, 2, or 3 LQTS (LQT1, 2, or 3) or were seen because of an initial suspicion for LQTS but were discharged without this diagnosis. A multilayer convolutional neural network was used to classify patients based on a 10-second, 12-lead ECG, AI-enhanced ECG (AI-ECG). The convolutional neural network was trained using 60% of the patients, validated in 10% of the patients, and tested on the remaining patients (30%). The study was conducted from January 1, 1999, to December 31, 2018.The goal of the study was to test the ability of the convolutional neural network to distinguish patients with LQTS from those who were evaluated for LQTS but discharged without this diagnosis, especially among patients with genetically confirmed LQTS but a normal QTc value at rest (referred to as genotype positive/phenotype negative LQTS, normal QT interval LQTS, or concealed LQTS).Of the 2059 patients included, 1180 were men (57%); mean (SD) age at first ECG was 21.6 (15.6) years. All 12-lead ECGs from 967 patients with LQTS and 1092 who were evaluated for LQTS but discharged without this diagnosis were included for AI-ECG analysis. Based on the ECG-derived QTc alone, patients were classified with an area under the curve (AUC) value of 0.824 (95% CI, 0.79-0.858); using AI-ECG, the AUC was 0.900 (95% CI, 0.876-0.925). Furthermore, in the subset of patients who had a normal resting QTc (<450 milliseconds), the QTc alone distinguished those with LQTS from those without LQTS with an AUC of 0.741 (95% CI, 0.689-0.794), whereas the AI-ECG increased this discrimination to an AUC of 0.863 (95% CI, 0.824-0.903). In addition, the AI-ECG was able to distinguish the 3 main genotypic subgroups (LQT1, LQT2, and LQT3) with an AUC of 0.921 (95% CI, 0.890-0.951) for LQT1 compared with LQT2 and 3, 0.944 (95% CI, 0.918-0.970) for LQT2 compared with LQT1 and 3, and 0.863 (95% CI, 0.792-0.934) for LQT3 compared with LQT1 and 2.In this study, the AI-ECG was found to distinguish patients with electrocardiographically concealed LQTS from those discharged without a diagnosis of LQTS and provide a nearly 80% accurate pregenetic test anticipation of LQTS genotype status. This model may aid in the detection of LQTS in patients presenting to an arrhythmia clinic and, with validation, may be the stepping stone to similar tools to be developed for use in the general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助黄志伟采纳,获得10
8秒前
科研通AI6.2应助黄志伟采纳,获得10
8秒前
KYT完成签到 ,获得积分10
1分钟前
1分钟前
庄严发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
FashionBoy应助傲娇的曼香采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
2分钟前
2分钟前
JJBOND发布了新的文献求助10
2分钟前
勤恳八宝粥完成签到 ,获得积分10
2分钟前
傲娇的曼香完成签到,获得积分10
2分钟前
Zzoevy完成签到 ,获得积分10
3分钟前
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
asdfqwer应助科研通管家采纳,获得10
3分钟前
Crisp完成签到 ,获得积分10
4分钟前
6分钟前
永远发布了新的文献求助10
6分钟前
玛琳卡迪马完成签到 ,获得积分10
7分钟前
萨尔莫斯完成签到,获得积分10
7分钟前
zht完成签到,获得积分10
8分钟前
kevin完成签到 ,获得积分10
8分钟前
9分钟前
hwx发布了新的文献求助30
9分钟前
9分钟前
江小姜发布了新的文献求助10
10分钟前
江小姜完成签到,获得积分20
10分钟前
貔貅完成签到 ,获得积分10
10分钟前
赘婿应助杜琦采纳,获得10
11分钟前
11分钟前
11分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845355
求助须知:如何正确求助?哪些是违规求助? 6201719
关于积分的说明 15616386
捐赠科研通 4962184
什么是DOI,文献DOI怎么找? 2675323
邀请新用户注册赠送积分活动 1620073
关于科研通互助平台的介绍 1575372