亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram

医学 QT间期 长QT综合征 心脏病学 心电图 内科学 心源性猝死 卷积神经网络 人工智能 计算机科学
作者
J. Martijn Bos,Zachi I. Attia,D.J. Albert,Peter A. Noseworthy,Paul A. Friedman,Michael J. Ackerman
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:6 (5): 532-532 被引量:109
标识
DOI:10.1001/jamacardio.2020.7422
摘要

Long QT syndrome (LQTS) is characterized by prolongation of the QT interval and is associated with an increased risk of sudden cardiac death. However, although QT interval prolongation is the hallmark feature of LQTS, approximately 40% of patients with genetically confirmed LQTS have a normal corrected QT (QTc) at rest. Distinguishing patients with LQTS from those with a normal QTc is important to correctly diagnose disease, implement simple LQTS preventive measures, and initiate prophylactic therapy if necessary.To determine whether artificial intelligence (AI) using deep neural networks is better than the QTc alone in distinguishing patients with concealed LQTS from those with a normal QTc using a 12-lead electrocardiogram (ECG).A diagnostic case-control study was performed using all available 12-lead ECGs from 2059 patients presenting to a specialized genetic heart rhythm clinic. Patients were included if they had a definitive clinical and/or genetic diagnosis of type 1, 2, or 3 LQTS (LQT1, 2, or 3) or were seen because of an initial suspicion for LQTS but were discharged without this diagnosis. A multilayer convolutional neural network was used to classify patients based on a 10-second, 12-lead ECG, AI-enhanced ECG (AI-ECG). The convolutional neural network was trained using 60% of the patients, validated in 10% of the patients, and tested on the remaining patients (30%). The study was conducted from January 1, 1999, to December 31, 2018.The goal of the study was to test the ability of the convolutional neural network to distinguish patients with LQTS from those who were evaluated for LQTS but discharged without this diagnosis, especially among patients with genetically confirmed LQTS but a normal QTc value at rest (referred to as genotype positive/phenotype negative LQTS, normal QT interval LQTS, or concealed LQTS).Of the 2059 patients included, 1180 were men (57%); mean (SD) age at first ECG was 21.6 (15.6) years. All 12-lead ECGs from 967 patients with LQTS and 1092 who were evaluated for LQTS but discharged without this diagnosis were included for AI-ECG analysis. Based on the ECG-derived QTc alone, patients were classified with an area under the curve (AUC) value of 0.824 (95% CI, 0.79-0.858); using AI-ECG, the AUC was 0.900 (95% CI, 0.876-0.925). Furthermore, in the subset of patients who had a normal resting QTc (<450 milliseconds), the QTc alone distinguished those with LQTS from those without LQTS with an AUC of 0.741 (95% CI, 0.689-0.794), whereas the AI-ECG increased this discrimination to an AUC of 0.863 (95% CI, 0.824-0.903). In addition, the AI-ECG was able to distinguish the 3 main genotypic subgroups (LQT1, LQT2, and LQT3) with an AUC of 0.921 (95% CI, 0.890-0.951) for LQT1 compared with LQT2 and 3, 0.944 (95% CI, 0.918-0.970) for LQT2 compared with LQT1 and 3, and 0.863 (95% CI, 0.792-0.934) for LQT3 compared with LQT1 and 2.In this study, the AI-ECG was found to distinguish patients with electrocardiographically concealed LQTS from those discharged without a diagnosis of LQTS and provide a nearly 80% accurate pregenetic test anticipation of LQTS genotype status. This model may aid in the detection of LQTS in patients presenting to an arrhythmia clinic and, with validation, may be the stepping stone to similar tools to be developed for use in the general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
yg发布了新的文献求助10
11秒前
11秒前
25秒前
37秒前
阿藏完成签到,获得积分10
1分钟前
happyrrc完成签到,获得积分10
1分钟前
1分钟前
佚名123完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
可乐发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Herman发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
上官若男应助Herman采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
boom完成签到 ,获得积分10
4分钟前
SSY发布了新的文献求助10
4分钟前
可乐发布了新的文献求助10
4分钟前
迷路师发布了新的文献求助10
5分钟前
5分钟前
liuliu发布了新的文献求助10
5分钟前
化学完成签到 ,获得积分10
5分钟前
5分钟前
yg发布了新的文献求助10
5分钟前
5分钟前
晓晓发布了新的文献求助10
5分钟前
赘婿应助shi采纳,获得10
6分钟前
乐乐应助yg采纳,获得10
6分钟前
6分钟前
CodeCraft应助NJP采纳,获得10
6分钟前
静水流深完成签到,获得积分10
6分钟前
LiangRen完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723876
求助须知:如何正确求助?哪些是违规求助? 5282103
关于积分的说明 15299312
捐赠科研通 4872127
什么是DOI,文献DOI怎么找? 2616578
邀请新用户注册赠送积分活动 1566455
关于科研通互助平台的介绍 1523290