A data-driven multi-criteria decision-making approach for assessing new product conceptual designs

托普西斯 计算机科学 新产品开发 概念设计 质量(理念) 汽车工业 理想溶液 产品(数学) 秩(图论) 产品设计 工业工程 风险分析(工程) 运筹学 数据挖掘 管理科学 工程类 数学 营销 业务 哲学 物理 几何学 认识论 人机交互 组合数学 热力学 航空航天工程
作者
Hamidreza Arbabi,Behdin Vahedi-Nouri,Seyedhossein Iranmanesh,Reza Tavakkoli–Moghaddam
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE]
卷期号:236 (14): 1900-1911 被引量:7
标识
DOI:10.1177/0954405421991418
摘要

The surge in competition among companies to acquire a more significant portion of the market as well as respecting customer preferences in high quality and diverse products result in a reduction of product life cycles. Accordingly, companies are under enormous pressure to introduce new high quality and diverse products on time. Assessing new product designs at the primary phases of new product development (NPD) is a necessary and complex activity that can considerably reduce the time and cost of introducing new products to the market. The current methods of evaluating new product conceptual designs, including employing decision-making methods based on subjective opinions of experts, utilizing simulation packages, and following trial-and-error approaches in prototyping, may be inefficient, very time-consuming, and costly. To overcome this issue, this paper develops a quantitative data-driven Multi-Criteria Decision-Making (MCDM) approach founded on the combination of an Artificial Neural Network (ANN) method and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), to assess the new conceptual designs. So that the ANN method is utilized to predict the performance characteristics of new designs based on the related existed data of similar products, and TOPSIS is employed to score and rank different proposed alternatives designs. Finally, a case study of evaluating new product conceptual designs in an automotive research and development company is considered to demonstrate the performance and applicability of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ruochenzu发布了新的文献求助10
1秒前
1秒前
充电宝应助glacierflame采纳,获得10
1秒前
1秒前
medaW发布了新的文献求助10
2秒前
雪莉酒完成签到,获得积分10
5秒前
刺眼的疼完成签到 ,获得积分10
5秒前
MRM发布了新的文献求助10
5秒前
5秒前
科研r发布了新的文献求助10
5秒前
rebeycca完成签到,获得积分10
6秒前
FashionBoy应助酸奶七采纳,获得10
6秒前
Evangeline993发布了新的文献求助10
7秒前
落后的瑾瑜完成签到,获得积分10
7秒前
10秒前
科研通AI2S应助晨霭微凉采纳,获得30
13秒前
14秒前
烂漫耳机完成签到,获得积分20
15秒前
16秒前
呆呆完成签到,获得积分10
17秒前
薛婧旌完成签到,获得积分10
17秒前
18秒前
shadow完成签到,获得积分10
18秒前
18秒前
徐佳乐发布了新的文献求助10
18秒前
哎嘿应助小乔流水采纳,获得10
18秒前
围着那只小兔转完成签到 ,获得积分10
19秒前
STX发布了新的文献求助10
19秒前
21秒前
姜且发布了新的文献求助10
22秒前
22秒前
认真白薇发布了新的文献求助10
22秒前
sam发布了新的文献求助10
22秒前
传奇3应助medaW采纳,获得10
23秒前
shadow发布了新的文献求助30
23秒前
温柔晓刚完成签到,获得积分10
24秒前
彭于晏应助STX采纳,获得10
25秒前
方语蕊完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655