InfGCN: Identifying influential nodes in complex networks with graph convolutional networks

计算机科学 图形 理论计算机科学 人工智能
作者
Gouheng Zhao,Peng Jia,Anmin Zhou,Bing Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:414: 18-26 被引量:74
标识
DOI:10.1016/j.neucom.2020.07.028
摘要

Identifying influential nodes in a complex network is very critical as complex networks are ubiquitous. Traditional methods, such as centrality based methods and machine learning based methods, only consider either network structures or node features to evaluate the significance of nodes. However, the influential importance of nodes should be determined by both network structures and node features. To solve this problem, this paper proposes a deep learning model, named InfGCN, to identify the most influential nodes in a complex network based on Graph Convolutional Networks. InfGCN takes neighbor graphs and four classic structural features as the input into a graph convolutional network for learning nodes’ representations, and then feeds the representations into the task-learning layers, comparing the ground truth derived from Susceptible Infected Recovered (SIR) simulation experiments with quantitative infection rate. Extensive experiments on five real-world networks of different types and sizes demonstrate that the proposed model significantly outperforms traditional methods, and can accurately identify influential nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
灰灰发布了新的文献求助10
3秒前
暴躁的梦岚完成签到,获得积分10
3秒前
华仔应助杨三多采纳,获得10
3秒前
4秒前
4秒前
Akim应助wenbo采纳,获得10
4秒前
制冷剂完成签到 ,获得积分10
4秒前
5秒前
QUA应助缓慢修杰采纳,获得10
5秒前
6秒前
6秒前
slby完成签到 ,获得积分10
7秒前
lerrygg发布了新的文献求助20
7秒前
cc发布了新的文献求助10
7秒前
852应助曾经的真采纳,获得10
8秒前
九号完成签到,获得积分10
8秒前
江屿发布了新的文献求助10
9秒前
9秒前
神不搞科研完成签到,获得积分10
10秒前
Epiphany完成签到 ,获得积分10
10秒前
yang完成签到,获得积分10
10秒前
wanci应助机智的曼易采纳,获得10
10秒前
酷酷的冰真应助CQ采纳,获得20
10秒前
今后应助健壮的面包采纳,获得10
11秒前
11秒前
11秒前
雷小仙儿发布了新的文献求助10
11秒前
11秒前
领导范儿应助runner采纳,获得10
12秒前
12秒前
时倾完成签到,获得积分20
12秒前
12秒前
迷人书蝶完成签到,获得积分10
13秒前
13秒前
13秒前
青山发布了新的文献求助10
14秒前
时倾发布了新的文献求助10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326