计算机科学
弹丸
人工智能
一次性
分类器(UML)
班级(哲学)
机器学习
代表(政治)
特征学习
工程类
政治学
机械工程
政治
有机化学
化学
法学
作者
Junhua Wang,Yong-Ping Zhai
出处
期刊:IEEE International Conference on Electronics Information and Emergency Communication
日期:2020-07-17
被引量:18
标识
DOI:10.1109/iceiec49280.2020.9152261
摘要
We propose a novel architecture, called Prototypical Siamese Networks, for few-shot learning, where a classifier must generalize to new classes not seen in the training set, given only a few examples of each class. Prototypical Siamese Networks add a new module to siamese networks to learn a high quality prototypical representation of each class. Compared to recent methods for few-shot learning, our method achieves state-of-the-art performance on few-shot learning. Experiments on two benchmarks validate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI