Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks

臭氧监测仪 环境科学 遥感 卫星 残余物 标准差 空间变异性 气溶胶 气象学 地质学 统计 地理 计算机科学 工程类 航空航天工程 数学 算法
作者
Lianfa Li,Jiajie Wu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:254: 112257-112257 被引量:55
标识
DOI:10.1016/j.rse.2020.112257
摘要

Compared with the limited capability of ground-level monitoring, remote sensing provides useful image data at a moderate or high spatial or temporal resolution with global coverage for monitoring of air pollutants, e.g., aerosol optical depth (AOD) observations from the MODIS for fine particulate matter (PM2.5) and Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) vertical columns for ground-level NO2 concentration. However, the extensive nonrandom missingness of OMI-NO2 data (e.g., an approximate per-pixel missing proportion of 59% for mainland China in 2015) due to cloud contamination or high reflectance limits applicability of these data in estimation of ground-level NO2. This paper proposes the use of a full residual deep learning method to impute missing satellite-borne NO2 data (OMI-NO2) and to estimate (map) ground-level NO2 with uncertainty (coefficient of variation) at a high spatial (1 × 1 km2) and temporal (daily) resolution. For the large study region (mainland China except Hainan Province), the presented method achieved robust performance with a stable learning efficiency (mean test R2: 0.98 with a small standard deviation of 0.01; mean test RMSE: 0.42 × 1015 molecules/cm2) for imputation of OMI-NO2. In the model, the coordinates and elevation were used to capture the spatial variability of the OMI-NO2 columns, and fused meteorological grid data and planetary boundary layer height and ozone data from GEOS-FP were used to capture spatiotemporal variability of OMI-NO2. The evaluation with ground in situ NO2 measurements showed considerable contribution of the complete (raw observed and imputed) OMI-NO2 columns, meteorology and traffic variables to inference of ground-level NO2 (test R2: 0.82; test RMSE: 8.80 μg/m3). The complete grids of OMI-NO2 columns showed natural and smooth spatial transitions between the raw observed and imputed values. The surfaces of predicted NO2 concentration not only showed consistent distributions with OMI-NO2 at a regional and temporal scale, but also presented local spatial gradients of ground-level NO2. OMI-NO2 can be downscaled and imputed to be used as an important predictor to improve the estimation of high-resolution ground-level NO2. The reliable estimates of ground-level NO2 concentration with uncertainty can reduce the bias in estimates of NO2 exposure and subsequently evaluations of its health effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助123号采纳,获得10
2秒前
超帅的遥完成签到,获得积分10
2秒前
Zxc完成签到,获得积分10
3秒前
lbt完成签到 ,获得积分10
4秒前
yao完成签到 ,获得积分10
5秒前
5秒前
7秒前
8秒前
8秒前
doudou完成签到 ,获得积分10
8秒前
BCS完成签到,获得积分10
8秒前
领导范儿应助KYN采纳,获得10
8秒前
9秒前
独特的莫言完成签到,获得积分10
11秒前
lin发布了新的文献求助10
12秒前
aero完成签到 ,获得积分10
14秒前
123号完成签到,获得积分10
16秒前
充电宝应助TT采纳,获得10
18秒前
19秒前
19秒前
英姑应助荒野星辰采纳,获得10
21秒前
21秒前
YHY完成签到,获得积分10
23秒前
科研通AI5应助魏伯安采纳,获得10
23秒前
caoyy发布了新的文献求助10
23秒前
24秒前
25秒前
张喻235532完成签到,获得积分10
26秒前
失眠虔纹发布了新的文献求助10
27秒前
香蕉觅云应助糊涂的小伙采纳,获得10
27秒前
27秒前
sutharsons应助科研通管家采纳,获得200
29秒前
打打应助科研通管家采纳,获得10
29秒前
axin应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
无花果应助科研通管家采纳,获得10
29秒前
29秒前
李健应助科研通管家采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849