Spatiotemporal estimation of satellite-borne and ground-level NO2 using full residual deep networks

臭氧监测仪 环境科学 遥感 卫星 残余物 标准差 空间变异性 气溶胶 气象学 地质学 统计 地理 计算机科学 工程类 航空航天工程 数学 算法
作者
Lianfa Li,Jiajie Wu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:254: 112257-112257 被引量:55
标识
DOI:10.1016/j.rse.2020.112257
摘要

Compared with the limited capability of ground-level monitoring, remote sensing provides useful image data at a moderate or high spatial or temporal resolution with global coverage for monitoring of air pollutants, e.g., aerosol optical depth (AOD) observations from the MODIS for fine particulate matter (PM2.5) and Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) vertical columns for ground-level NO2 concentration. However, the extensive nonrandom missingness of OMI-NO2 data (e.g., an approximate per-pixel missing proportion of 59% for mainland China in 2015) due to cloud contamination or high reflectance limits applicability of these data in estimation of ground-level NO2. This paper proposes the use of a full residual deep learning method to impute missing satellite-borne NO2 data (OMI-NO2) and to estimate (map) ground-level NO2 with uncertainty (coefficient of variation) at a high spatial (1 × 1 km2) and temporal (daily) resolution. For the large study region (mainland China except Hainan Province), the presented method achieved robust performance with a stable learning efficiency (mean test R2: 0.98 with a small standard deviation of 0.01; mean test RMSE: 0.42 × 1015 molecules/cm2) for imputation of OMI-NO2. In the model, the coordinates and elevation were used to capture the spatial variability of the OMI-NO2 columns, and fused meteorological grid data and planetary boundary layer height and ozone data from GEOS-FP were used to capture spatiotemporal variability of OMI-NO2. The evaluation with ground in situ NO2 measurements showed considerable contribution of the complete (raw observed and imputed) OMI-NO2 columns, meteorology and traffic variables to inference of ground-level NO2 (test R2: 0.82; test RMSE: 8.80 μg/m3). The complete grids of OMI-NO2 columns showed natural and smooth spatial transitions between the raw observed and imputed values. The surfaces of predicted NO2 concentration not only showed consistent distributions with OMI-NO2 at a regional and temporal scale, but also presented local spatial gradients of ground-level NO2. OMI-NO2 can be downscaled and imputed to be used as an important predictor to improve the estimation of high-resolution ground-level NO2. The reliable estimates of ground-level NO2 concentration with uncertainty can reduce the bias in estimates of NO2 exposure and subsequently evaluations of its health effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zzqx采纳,获得10
4秒前
LIX完成签到,获得积分10
14秒前
科研通AI2S应助甜崽采纳,获得30
16秒前
16秒前
18秒前
20秒前
meisisi发布了新的文献求助10
20秒前
耶耶粘豆包完成签到,获得积分10
22秒前
Layli发布了新的文献求助10
22秒前
22秒前
苏木发布了新的文献求助10
23秒前
mtfx发布了新的文献求助10
24秒前
笑笑发布了新的文献求助10
24秒前
24秒前
刘莅完成签到 ,获得积分10
26秒前
芊芊完成签到 ,获得积分10
26秒前
hellosci666完成签到,获得积分10
26秒前
26秒前
郭晓宇完成签到,获得积分10
27秒前
乐乐应助路痴采纳,获得10
27秒前
鳗鱼语风完成签到,获得积分10
28秒前
温暖南莲完成签到,获得积分10
28秒前
29秒前
科研通AI2S应助孤独丹秋采纳,获得10
29秒前
meisisi完成签到,获得积分20
30秒前
30秒前
李君然发布了新的文献求助10
30秒前
郭晓宇发布了新的文献求助10
32秒前
叮咚叮咚发布了新的文献求助10
33秒前
34秒前
34秒前
miaomiao_ma完成签到,获得积分10
35秒前
Heidi完成签到,获得积分10
35秒前
hh发布了新的文献求助10
37秒前
轨迹发布了新的文献求助20
37秒前
38秒前
40秒前
41秒前
NE完成签到,获得积分10
41秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870