Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques

线性判别分析 化学 气体分析呼吸 模式识别(心理学) 偏最小二乘回归 化学计量学 人工智能 背景(考古学) 统计 色谱法 数学 计算机科学 古生物学 生物
作者
Karen Segers,Amorn Slosse,Johan Viaene,Michiel Bannier,Kim D. G. van de Kant,Edward Dompeling,Ann Van Eeckhaut,Joeri Vercammen,Yvan Vander Heyden
出处
期刊:Talanta [Elsevier]
卷期号:225: 122080-122080 被引量:15
标识
DOI:10.1016/j.talanta.2021.122080
摘要

Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with H3O+, NO+ and O2+. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoqf发布了新的文献求助10
刚刚
MOOOO完成签到,获得积分10
刚刚
xin发布了新的文献求助10
刚刚
勤劳亦瑶完成签到,获得积分20
2秒前
斯文败类应助兴奋的万声采纳,获得30
2秒前
chanhow完成签到,获得积分10
2秒前
rainsy发布了新的文献求助10
3秒前
桐桐应助于沁冉采纳,获得30
3秒前
SSS完成签到,获得积分20
4秒前
4秒前
李爱国应助Lucy采纳,获得10
5秒前
一颗葡萄完成签到 ,获得积分10
6秒前
chanhow发布了新的文献求助10
6秒前
7秒前
7秒前
冬日空虚应助小马哥采纳,获得10
8秒前
小二郎应助勤劳亦瑶采纳,获得10
9秒前
田T发布了新的文献求助10
9秒前
慌慌完成签到 ,获得积分10
10秒前
MOOOO发布了新的文献求助10
10秒前
13秒前
SSS发布了新的文献求助10
13秒前
13秒前
俏皮不可完成签到,获得积分10
13秒前
13秒前
残剑月应助香香采纳,获得10
15秒前
薯条发布了新的文献求助10
15秒前
fsznc完成签到 ,获得积分0
16秒前
量子星尘发布了新的文献求助10
16秒前
清风在侧发布了新的文献求助10
17秒前
17秒前
俏皮不可发布了新的文献求助10
17秒前
陈民完成签到,获得积分20
17秒前
Jasper应助加油kiki采纳,获得10
18秒前
19秒前
小马甲应助自由的笑容采纳,获得10
19秒前
20秒前
uone完成签到,获得积分10
21秒前
21秒前
Lucas应助曈梦采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297