Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques

线性判别分析 化学 气体分析呼吸 模式识别(心理学) 偏最小二乘回归 化学计量学 人工智能 背景(考古学) 统计 色谱法 数学 计算机科学 古生物学 生物
作者
Karen Segers,Amorn Slosse,Johan Viaene,Michiel Bannier,Kim D. G. van de Kant,Edward Dompeling,Ann Van Eeckhaut,Joeri Vercammen,Yvan Vander Heyden
出处
期刊:Talanta [Elsevier]
卷期号:225: 122080-122080 被引量:15
标识
DOI:10.1016/j.talanta.2021.122080
摘要

Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) has been applied in a clinical context as diagnostic tool for breath samples using target biomarkers. Exhaled breath sampling is non-invasive and therefore much more patient friendly compared to bronchoscopy, which is the golden standard for evaluating airway inflammation. In the actual pilot study, 55 exhaled breath samples of children with asthma, cystic-fibrosis and healthy individuals were included. Rather than focusing on the analysis of target biomarkers or on the identification of biomarkers, different data analysis strategies, including a variety of pretreatment, classification and discrimination techniques, are evaluated regarding their capacity to distinguish the three classes based on subtle differences in their full scan SIFT-MS spectra. Proper data-analysis strategies are required because these full scan spectra contain much external, i.e. unwanted, variation. Each SIFT-MS analysis generates three spectra resulting from ion-molecule reactions of analyte molecules with H3O+, NO+ and O2+. Models were built with Linear Discriminant Analysis, Quadratic Discriminant Analysis, Soft Independent Modelling by Class Analogy, Partial Least Squares - Discriminant Analysis, K-Nearest Neighbours, and Classification and Regression Trees. Perfect models, concerning overall sensitivity and specificity (100% for both) were found using Direct Orthogonal Signal Correction (DOSC) pretreatment. Given the uncertainty related to the classification models associated with DOSC pretreatments (i.e. good classification found also for random classes), other models are built applying other preprocessing approaches. A Partial Least Squares - Discriminant Analysis model with a combined pre-processing method considering single value imputation results in 100% sensitivity and specificity for calibration, but was less good predictive. Pareto scaling prior to Quadratic Discriminant Analysis resulted in 41/55 correctly classified samples for calibration and 34/55 for cross-validation. In future, the uncertainty with DOSC and the applicability of the promising preprocessing methods and models must be further studied applying a larger representative data set with a more extensive number of samples for each class. Nevertheless, this pilot study showed already some potential for the untargeted SIFT-MS application as a rapid pattern-recognition technique, useful in the diagnosis of clinical breath samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助牛贝贝采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
BowieHuang应助Ymir采纳,获得40
2秒前
2秒前
NexusExplorer应助1101592875采纳,获得10
2秒前
付研琪发布了新的文献求助10
2秒前
花灯王子完成签到,获得积分10
3秒前
Lqian_Yu完成签到 ,获得积分10
3秒前
小葛发布了新的文献求助10
3秒前
Kevin发布了新的文献求助20
4秒前
lzx完成签到,获得积分10
4秒前
ZIS发布了新的文献求助10
4秒前
吴帅发布了新的文献求助10
4秒前
4秒前
4秒前
keyanrubbish发布了新的文献求助10
4秒前
tangshijun完成签到,获得积分10
5秒前
5秒前
5秒前
子车茗应助sober采纳,获得20
5秒前
5秒前
无疾而终完成签到,获得积分10
5秒前
Tdj完成签到,获得积分10
5秒前
白苹果完成签到 ,获得积分10
6秒前
天行完成签到,获得积分10
6秒前
爆米花应助666采纳,获得10
6秒前
7秒前
potatozhou完成签到,获得积分10
7秒前
7秒前
Harssi发布了新的文献求助10
7秒前
yunyii发布了新的文献求助10
7秒前
7秒前
领导范儿应助Jerrie采纳,获得10
8秒前
Aurora发布了新的文献求助10
8秒前
万能图书馆应助惠香香的采纳,获得10
8秒前
共享精神应助微笑的弧度采纳,获得10
8秒前
诚心寄灵完成签到,获得积分20
9秒前
Leon发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836