清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison of the Tree-Based Machine Learning Algorithms to Cox Regression in Predicting the Survival of Oral and Pharyngeal Cancers: Analyses Based on SEER Database

医学 递归分区 癌症 肿瘤科 内科学 逻辑回归 决策树 树(集合论) 回归 生存分析 支持向量机 计算机科学
作者
Mi Du,Dandara Haag,John Lynch,Murthy Mittinty
出处
期刊:Cancers [MDPI AG]
卷期号:12 (10): 2802-2802 被引量:32
标识
DOI:10.3390/cancers12102802
摘要

This study aims to demonstrate the use of the tree-based machine learning algorithms to predict the 3- and 5-year disease-specific survival of oral and pharyngeal cancers (OPCs) and compare their performance with the traditional Cox regression. A total of 21,154 individuals diagnosed with OPCs between 2004 and 2009 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Three tree-based machine learning algorithms (survival tree (ST), random forest (RF) and conditional inference forest (CF)), together with a reference technique (Cox proportional hazard models (Cox)), were used to develop the survival prediction models. To handle the missing values in predictors, we applied the substantive model compatible version of the fully conditional specification imputation approach to the Cox model, whereas we used RF to impute missing data for the ST, RF and CF models. For internal validation, we used 10-fold cross-validation with 50 iterations in the model development datasets. Following this, model performance was evaluated using the C-index, integrated Brier score (IBS) and calibration curves in the test datasets. For predicting the 3-year survival of OPCs with the complete cases, the C-index in the development sets were 0.77 (0.77, 0.77), 0.70 (0.70, 0.70), 0.83 (0.83, 0.84) and 0.83 (0.83, 0.86) for Cox, ST, RF and CF, respectively. Similar results were observed in the 5-year survival prediction models, with C-index for Cox, ST, RF and CF being 0.76 (0.76, 0.76), 0.69 (0.69, 0.70), 0.83 (0.83, 0.83) and 0.85 (0.84, 0.86), respectively, in development datasets. The prediction error curves based on IBS showed a similar pattern for these models. The predictive performance remained unchanged in the analyses with imputed data. Additionally, a free web-based calculator was developed for potential clinical use. In conclusion, compared to Cox regression, ST had a lower and RF and CF had a higher predictive accuracy in predicting the 3- and 5-year OPCs survival using SEER data. The RF and CF algorithms provide non-parametric alternatives to Cox regression to be of clinical use for estimating the survival probability of OPCs patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongxuezhi完成签到,获得积分10
20秒前
41秒前
Mine发布了新的文献求助50
48秒前
晶杰完成签到 ,获得积分10
1分钟前
大个应助雅樱采纳,获得10
1分钟前
Hello应助要减肥的婷冉采纳,获得10
1分钟前
要减肥的婷冉完成签到,获得积分10
1分钟前
1分钟前
Mine完成签到,获得积分10
1分钟前
1分钟前
3分钟前
4分钟前
jyy应助FUNG采纳,获得10
4分钟前
4分钟前
慧喆完成签到 ,获得积分10
5分钟前
刘佳佳完成签到 ,获得积分10
5分钟前
YANGLan完成签到,获得积分10
5分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
FUNG发布了新的文献求助10
7分钟前
肆肆完成签到,获得积分10
7分钟前
Tei完成签到,获得积分10
7分钟前
xaopng完成签到,获得积分10
8分钟前
小西完成签到 ,获得积分10
8分钟前
Anan完成签到,获得积分10
9分钟前
木南大宝完成签到 ,获得积分10
9分钟前
乐乐应助Anan采纳,获得10
10分钟前
10分钟前
Anan发布了新的文献求助10
10分钟前
11分钟前
去去去去发布了新的文献求助10
11分钟前
科研通AI2S应助去去去去采纳,获得10
11分钟前
紫熊完成签到,获得积分10
12分钟前
joe完成签到 ,获得积分0
13分钟前
oracl完成签到 ,获得积分10
14分钟前
lilili发布了新的文献求助10
15分钟前
所所应助HudaBala采纳,获得10
15分钟前
辛勤的小海豚完成签到,获得积分10
15分钟前
lilili完成签到,获得积分10
15分钟前
墨海完成签到 ,获得积分10
16分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335