Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 几何学 精神科 神经科学 化学 认识论 环境卫生 地理 色谱法 大地测量学
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier BV]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称231发布了新的文献求助10
1秒前
酷酷完成签到,获得积分10
1秒前
1秒前
Hello应助cyw采纳,获得10
2秒前
Orange应助给我一块钱采纳,获得10
2秒前
李爱国应助水木年华采纳,获得10
2秒前
愉快山菡完成签到,获得积分10
3秒前
模拟洗涤剂完成签到 ,获得积分10
3秒前
dd发布了新的文献求助30
3秒前
chen发布了新的文献求助10
4秒前
enen发布了新的文献求助10
4秒前
冷傲静竹发布了新的文献求助10
5秒前
555557应助花生什么树了采纳,获得10
5秒前
FashionBoy应助眠眠羊采纳,获得10
6秒前
笑嘻嘻发布了新的文献求助10
6秒前
6秒前
6秒前
555557应助肯瑞恩哭哭采纳,获得10
7秒前
岸上牛完成签到,获得积分10
7秒前
WWWWH完成签到,获得积分10
7秒前
8秒前
小饼干完成签到,获得积分20
8秒前
所所应助jiajia采纳,获得10
8秒前
陈西发布了新的文献求助10
8秒前
8秒前
酒酒完成签到,获得积分10
8秒前
求文献完成签到,获得积分10
9秒前
咿咿呀呀发布了新的文献求助10
9秒前
9秒前
skoch完成签到 ,获得积分10
10秒前
和国彪发布了新的文献求助30
10秒前
10秒前
玩命的易绿应助笨鸟先飞采纳,获得10
10秒前
bkagyin应助肖123采纳,获得10
10秒前
10秒前
bkagyin应助luca采纳,获得10
11秒前
11秒前
江小盒发布了新的文献求助10
12秒前
12秒前
Xiaoxiao应助冷傲静竹采纳,获得20
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974358
求助须知:如何正确求助?哪些是违规求助? 3518706
关于积分的说明 11195521
捐赠科研通 3254897
什么是DOI,文献DOI怎么找? 1797614
邀请新用户注册赠送积分活动 877011
科研通“疑难数据库(出版商)”最低求助积分说明 806128