Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 几何学 精神科 神经科学 化学 认识论 环境卫生 地理 色谱法 大地测量学
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
土豆发布了新的文献求助10
刚刚
开心完成签到,获得积分10
1秒前
1秒前
潇洒的冰烟完成签到,获得积分10
1秒前
1秒前
科研通AI6应助Xu采纳,获得10
1秒前
1秒前
慕青应助rui采纳,获得10
2秒前
虎皮狗椒发布了新的文献求助10
2秒前
万能图书馆应助gao采纳,获得10
3秒前
3秒前
romeo发布了新的文献求助30
4秒前
janice发布了新的文献求助10
4秒前
严珍珍完成签到 ,获得积分10
4秒前
薄荷味完成签到,获得积分10
5秒前
脑洞疼应助伊洛采纳,获得10
5秒前
6秒前
无极微光应助维嘉采纳,获得20
6秒前
sunshine发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
田様应助abb先生采纳,获得10
7秒前
积木123完成签到,获得积分10
7秒前
BowieHuang应助VDC采纳,获得10
8秒前
科研通AI6应助高玉峰采纳,获得10
11秒前
romeo发布了新的文献求助10
11秒前
爆米花应助缥缈的涵菡采纳,获得10
11秒前
周周完成签到,获得积分10
12秒前
爆米花应助jzy采纳,获得10
12秒前
李健的小迷弟应助sunshine采纳,获得10
13秒前
14秒前
romeo发布了新的文献求助10
15秒前
yxsxm完成签到,获得积分10
16秒前
迪歪歪应助阳光热狗采纳,获得20
16秒前
16秒前
17秒前
17秒前
17秒前
归尘发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774