Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 化学 环境卫生 认识论 色谱法 神经科学 精神科 几何学 大地测量学 地理
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier BV]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩虹儿应助dongsheng采纳,获得10
1秒前
1秒前
ddddansu发布了新的文献求助10
2秒前
3秒前
3秒前
l1844852731完成签到 ,获得积分10
4秒前
小二郎应助老迟到的幼枫采纳,获得10
4秒前
深情隶完成签到,获得积分10
4秒前
AN发布了新的文献求助10
4秒前
向晚完成签到 ,获得积分10
5秒前
5秒前
打打应助JBY采纳,获得10
6秒前
香蕉觅云应助lvxinda采纳,获得10
6秒前
6秒前
Zzz完成签到,获得积分10
7秒前
HmH完成签到,获得积分10
7秒前
佳佳完成签到,获得积分10
7秒前
情怀应助MoonByMoon采纳,获得10
7秒前
123发布了新的文献求助30
7秒前
7秒前
8秒前
ddddansu完成签到,获得积分10
8秒前
科研通AI5应助美丽秋蝶采纳,获得10
8秒前
沈沈完成签到,获得积分10
9秒前
jing发布了新的文献求助10
9秒前
wxr完成签到 ,获得积分10
9秒前
9秒前
11秒前
一棵完成签到 ,获得积分10
11秒前
qiao完成签到,获得积分10
11秒前
11秒前
汉堡包应助Pendulium采纳,获得10
12秒前
hdbys完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
周轩完成签到,获得积分10
14秒前
liusj完成签到,获得积分10
14秒前
ss发布了新的文献求助10
14秒前
Miyo完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170