亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 化学 环境卫生 认识论 色谱法 神经科学 精神科 几何学 大地测量学 地理
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier BV]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xinying完成签到,获得积分10
2秒前
19秒前
吴门烟水完成签到,获得积分0
23秒前
爱笑的眼睛完成签到,获得积分10
41秒前
zsmj23完成签到 ,获得积分0
52秒前
小飞鸡完成签到,获得积分10
54秒前
CodeCraft应助liudy采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
liudy完成签到,获得积分10
1分钟前
liudy发布了新的文献求助10
1分钟前
香蕉觅云应助LukeLion采纳,获得10
1分钟前
2分钟前
2分钟前
Jimmy完成签到 ,获得积分10
2分钟前
LukeLion发布了新的文献求助10
2分钟前
anyilin发布了新的文献求助10
2分钟前
anyilin完成签到,获得积分10
2分钟前
2分钟前
3分钟前
852应助科研通管家采纳,获得10
3分钟前
4分钟前
大模型应助爱听歌笑寒采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
amengptsd完成签到,获得积分10
4分钟前
优秀的dd完成签到 ,获得积分10
5分钟前
乐乐应助勇敢的蝙蝠侠采纳,获得10
5分钟前
CodeCraft应助勇敢的蝙蝠侠采纳,获得10
6分钟前
完美世界应助西瓜采纳,获得10
6分钟前
6分钟前
西瓜发布了新的文献求助10
6分钟前
6分钟前
6分钟前
极地东风发布了新的文献求助10
6分钟前
西瓜完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611550
求助须知:如何正确求助?哪些是违规求助? 4017019
关于积分的说明 12435975
捐赠科研通 3698914
什么是DOI,文献DOI怎么找? 2039848
邀请新用户注册赠送积分活动 1072626
科研通“疑难数据库(出版商)”最低求助积分说明 956329