Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 化学 环境卫生 认识论 色谱法 神经科学 精神科 几何学 大地测量学 地理
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无心的诗柳完成签到,获得积分10
1秒前
dd发布了新的文献求助10
1秒前
1秒前
科研通AI6应助vivi采纳,获得10
2秒前
PANSIXUAN完成签到,获得积分10
2秒前
2秒前
dsajkdlas发布了新的文献求助10
3秒前
shanjianjie发布了新的文献求助10
3秒前
3秒前
QQ发布了新的文献求助10
4秒前
传奇3应助胖头鱼please采纳,获得100
4秒前
李爱国应助dd采纳,获得10
5秒前
6秒前
隐形曼青应助热心的山芙采纳,获得10
6秒前
6秒前
7秒前
WIND-CUTTER完成签到,获得积分10
7秒前
滔滔完成签到 ,获得积分10
7秒前
DD发布了新的文献求助10
7秒前
lanchong发布了新的文献求助10
8秒前
9秒前
科研通AI6应助灵泽采纳,获得10
9秒前
10秒前
清爽馒头发布了新的文献求助30
11秒前
12秒前
奋斗飞丹完成签到 ,获得积分10
12秒前
Peipei完成签到,获得积分10
13秒前
白菜也挺贵完成签到,获得积分10
14秒前
时鹏飞完成签到,获得积分10
14秒前
蔡蔡蔡发布了新的文献求助10
15秒前
16秒前
jing发布了新的文献求助50
17秒前
17秒前
17秒前
lvhuiqi发布了新的文献求助10
18秒前
所所应助shanjianjie采纳,获得10
18秒前
xc完成签到,获得积分10
18秒前
20秒前
风趣雪一完成签到,获得积分10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077