Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 化学 环境卫生 认识论 色谱法 神经科学 精神科 几何学 大地测量学 地理
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
山巅上的羊完成签到,获得积分10
刚刚
菜鸟队长发布了新的文献求助30
1秒前
阳光的豆芽完成签到,获得积分10
1秒前
路大家发布了新的文献求助10
1秒前
yjn完成签到,获得积分10
2秒前
CM发布了新的文献求助10
2秒前
科研通AI6应助风中的天蓝采纳,获得10
3秒前
Akim应助樱花打落雨采纳,获得10
3秒前
只想梳油头完成签到,获得积分10
4秒前
齐天大圣完成签到,获得积分10
4秒前
泊頔完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
larsy完成签到 ,获得积分10
5秒前
5秒前
alisa发布了新的文献求助10
5秒前
害羞芷蕾完成签到 ,获得积分10
6秒前
6秒前
7秒前
科研通AI6应助mo采纳,获得10
7秒前
坦率的刺猬完成签到,获得积分10
7秒前
8秒前
博珺辰发布了新的文献求助10
8秒前
YYk发布了新的文献求助10
8秒前
何晶晶完成签到 ,获得积分10
10秒前
11秒前
轩儿轩发布了新的文献求助10
11秒前
快乐一江发布了新的文献求助10
11秒前
13秒前
Leo完成签到 ,获得积分10
14秒前
14秒前
丁鹏笑完成签到 ,获得积分0
15秒前
16秒前
皮卡丘完成签到 ,获得积分0
17秒前
生动初蓝发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
深情安青应助顶级科学家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402