Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 几何学 精神科 神经科学 化学 认识论 环境卫生 地理 色谱法 大地测量学
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
疯子发布了新的文献求助10
刚刚
笃定完成签到,获得积分10
1秒前
2秒前
李宁发布了新的文献求助10
3秒前
111发布了新的文献求助30
3秒前
Sofie完成签到,获得积分10
3秒前
3秒前
寻梦少年完成签到,获得积分10
3秒前
4秒前
zzzzzzz发布了新的文献求助20
4秒前
何时能发paper完成签到,获得积分10
4秒前
紫色琉璃脆脆鲨完成签到,获得积分10
4秒前
yue完成签到,获得积分10
4秒前
搞什么科研完成签到,获得积分20
5秒前
任性妙芹完成签到,获得积分10
5秒前
yyer完成签到,获得积分10
5秒前
高高水发布了新的文献求助10
5秒前
qh0305发布了新的文献求助10
6秒前
jianglili发布了新的文献求助10
6秒前
7秒前
7秒前
喜欢猫完成签到,获得积分10
7秒前
7秒前
纯真的问梅完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
zzz完成签到,获得积分10
7秒前
谢大喵应助陈哈哈采纳,获得30
8秒前
科研通AI6应助joni采纳,获得10
8秒前
曾无忧应助yh采纳,获得10
8秒前
XZC发布了新的文献求助10
8秒前
贪玩的甜瓜应助库里力采纳,获得10
8秒前
1111111完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
nancy_liang完成签到 ,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597673
求助须知:如何正确求助?哪些是违规求助? 4683190
关于积分的说明 14828741
捐赠科研通 4661266
什么是DOI,文献DOI怎么找? 2536776
邀请新用户注册赠送积分活动 1504368
关于科研通互助平台的介绍 1470215