Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 化学 环境卫生 认识论 色谱法 神经科学 精神科 几何学 大地测量学 地理
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier BV]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的轻发布了新的文献求助10
2秒前
Mengke发布了新的文献求助10
3秒前
HP发布了新的文献求助10
3秒前
young完成签到,获得积分10
3秒前
自建完成签到,获得积分10
4秒前
5秒前
Icecream发布了新的文献求助20
6秒前
123完成签到,获得积分10
6秒前
monster完成签到 ,获得积分10
7秒前
zhuangxin完成签到,获得积分10
8秒前
傻傻的野狼关注了科研通微信公众号
8秒前
回复对方完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
暮然发布了新的文献求助10
11秒前
tang完成签到,获得积分10
13秒前
狐狐发布了新的文献求助10
16秒前
狗宅发布了新的文献求助10
16秒前
17秒前
xingkun完成签到,获得积分10
17秒前
lu完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
阿欢完成签到,获得积分20
19秒前
香蕉觅云应助浮游窥天采纳,获得10
20秒前
21秒前
打打应助mdjinij采纳,获得10
21秒前
iccy完成签到,获得积分20
21秒前
暮然完成签到,获得积分10
22秒前
科研通AI6应助专注的轻采纳,获得10
22秒前
Clover04应助泽华采纳,获得10
22秒前
见雨鱼完成签到,获得积分10
22秒前
Yy完成签到 ,获得积分10
23秒前
23秒前
零知识发布了新的文献求助10
24秒前
24秒前
cc发布了新的文献求助10
25秒前
aaaaaah完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259194
求助须知:如何正确求助?哪些是违规求助? 4420930
关于积分的说明 13761428
捐赠科研通 4294692
什么是DOI,文献DOI怎么找? 2356531
邀请新用户注册赠送积分活动 1352944
关于科研通互助平台的介绍 1313859