Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning

脑电图 神经营销 均方误差 相关性 人口 预测能力 人工智能 计算机科学 样品(材料) 水准点(测量) 统计 心理学 机器学习 数学 医学 哲学 几何学 精神科 神经科学 化学 认识论 环境卫生 地理 色谱法 大地测量学
作者
Adam Hakim,Shira Klorfeld,Tal Sela,Doron Friedman,Maytal Shabat-Simon,Dino J. Levy
出处
期刊:International Journal of Research in Marketing [Elsevier]
卷期号:38 (3): 770-791 被引量:45
标识
DOI:10.1016/j.ijresmar.2020.10.005
摘要

A basic aim of marketing research is to predict consumers’ preferences and the success of marketing campaigns at the population-level. However, traditional marketing tools have various limitations, calling for novel measures to improve predictive power. In this study, we use multiple types of measures extracted from electroencephalography (EEG) recordings and machine learning (ML) algorithms to improve preference prediction based on self-reports alone. Subjects watched video commercials of six food products as we recorded their EEG activity, after which they responded to a questionnaire that served as a self-report benchmark measure. Thereafter, subjects made binary choices over the food products. We attempted to predict within-sample and population level preferences, based on subjects’ questionnaire responses and EEG measures extracted during the commercial viewings. We reached 68.5% accuracy in predicting between subjects’ most and least preferred products, improving accuracy by 4.07 percentage points compared to prediction based on self-reports alone. Additionally, EEG measures improved within-sample prediction of all six products by 20%, resulting in only a 1.91 root mean squared error (RMSE) compared to 2.39 RMSE with questionnaire-based prediction alone. Moreover, at the population level, assessed using YouTube metrics and an online questionnaire, EEG measures increased prediction by 12.7% and 12.6% respectively, compared to only a questionnaire-based prediction. We found that the most predictive EEG measures were frontal powers in the alpha band, hemispheric asymmetry in the beta band, and inter-subject correlation in delta and alpha bands. In summary, our novel approach, employing multiple types of EEG measures and ML models, offers marketing practitioners and researchers a valuable tool for predicting individual preferences and commercials’ success in the real world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李雪松完成签到 ,获得积分10
1秒前
totpto发布了新的文献求助10
1秒前
jia发布了新的文献求助10
1秒前
山神厘子完成签到,获得积分10
1秒前
专注的问寒举报孟辰凡求助涉嫌违规
1秒前
2秒前
面包战士发布了新的文献求助10
4秒前
4秒前
深情安青应助wuxunxun2015采纳,获得10
4秒前
闪闪的YOSH完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
茶包完成签到,获得积分10
6秒前
Nico完成签到,获得积分10
7秒前
李禾和完成签到,获得积分0
7秒前
充电宝应助xty采纳,获得10
7秒前
dynamoo发布了新的文献求助80
7秒前
豆丁完成签到,获得积分10
9秒前
9秒前
weii发布了新的文献求助10
9秒前
共享精神应助chaotong采纳,获得10
10秒前
今后应助hx采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
彭于晏应助Assure采纳,获得10
12秒前
朱婷完成签到,获得积分20
13秒前
禾研完成签到,获得积分10
13秒前
liquor发布了新的文献求助10
14秒前
orixero应助呆呆采纳,获得10
14秒前
科研通AI6应助zhang采纳,获得10
15秒前
棉花糖完成签到 ,获得积分20
15秒前
ZZRR完成签到,获得积分10
15秒前
雨姐科研应助WYJ采纳,获得10
16秒前
食草味完成签到,获得积分10
17秒前
完美世界应助无醇橙汁采纳,获得10
17秒前
11发布了新的文献求助10
18秒前
18秒前
18秒前
hanzhen发布了新的文献求助10
18秒前
哈基米哈吉完成签到,获得积分10
18秒前
优美猕猴桃完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613393
求助须知:如何正确求助?哪些是违规求助? 4698608
关于积分的说明 14898233
捐赠科研通 4736102
什么是DOI,文献DOI怎么找? 2547006
邀请新用户注册赠送积分活动 1510998
关于科研通互助平台的介绍 1473546