3D Brain MRI Reconstruction based on 2D Super-Resolution Technology

插值(计算机图形学) 计算机科学 迭代重建 人工智能 图像分辨率 卷积神经网络 实时核磁共振成像 计算机视觉 分辨率(逻辑) 像素 磁共振成像 模式识别(心理学) 图像(数学) 放射科 医学
作者
Hongtao Zhang,Yuki Shinomiya,Shin�ichi Yoshida
标识
DOI:10.1109/smc42975.2020.9283444
摘要

Magnetic resonance imaging (MRI) is one of the most important diagnostic imaging methods, which is widely used in diagnosis and image-guided therapy, especially imaging diagnosis of the brain. However, MRI images have the characteristics of low resolution, and there are limitations such as long imaging time and noise. Super-resolution techniques have been studied on three-dimensional MRI images using three-dimensional convolutional neural network. Based on some related techniques of super-resolution reconstruction of two-dimensional MRI slices, we evaluated the capability of several super-resolution technologies. We utilize the super-resolution algorithm based on generative adversarial network ESRGAN to realize super-resolution reconstruction of two-dimensional MRI slices, and then we further demonstrate that frequent details can be obtained from ESRGAN. In the aspect of two-dimensional to three-dimensional reconstruction, we use the technique of two-dimensional super-resolution on slices from three different latitudes. We rebuild reconstructed two-dimensional images into a three-dimensional form. Then based on the principle of linear interpolation, we use the surrounding effective pixel values to interpolate the null value of each slice, and realize the reconstruction of three-dimensional brain MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭郭要努力ya完成签到 ,获得积分10
刚刚
1秒前
科研通AI2S应助Saint采纳,获得10
1秒前
annafan完成签到,获得积分10
1秒前
2秒前
科目三应助雷桑采纳,获得10
2秒前
少吃顿饭并不难完成签到 ,获得积分10
3秒前
珠珠发布了新的文献求助10
3秒前
3秒前
刘三哥完成签到 ,获得积分10
4秒前
隐形曼青应助leederay采纳,获得10
5秒前
上官若男应助to_ooooo采纳,获得10
5秒前
海阔天空发布了新的文献求助10
6秒前
顺心羊完成签到,获得积分10
6秒前
科研_小白完成签到,获得积分10
6秒前
XJTU_jyh完成签到,获得积分10
7秒前
TheaGao完成签到 ,获得积分10
7秒前
不是省油的灯完成签到 ,获得积分10
9秒前
11秒前
11秒前
bububu完成签到,获得积分10
12秒前
nanaki完成签到,获得积分10
12秒前
13秒前
小蘑菇应助lin采纳,获得10
14秒前
14秒前
15秒前
czcz发布了新的文献求助10
15秒前
Sean完成签到 ,获得积分10
18秒前
雷桑发布了新的文献求助10
18秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
19秒前
Saint完成签到,获得积分10
20秒前
20秒前
零点起步完成签到,获得积分10
21秒前
认真丹亦完成签到 ,获得积分10
22秒前
时光完成签到,获得积分10
23秒前
24秒前
24秒前
科目三应助范先生采纳,获得10
24秒前
25秒前
神奇的海螺完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066