亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of invisible ischemic stroke in noncontrast CT based on novel two‐stage convolutional neural network model

卷积神经网络 人工智能 模式识别(心理学) 人工神经网络 冲程(发动机) 计算机科学 鉴定(生物学) 深度学习 阶段(地层学) 医学 放射科 植物 机械工程 生物 工程类 古生物学
作者
Guoqing Wu,Xi Chen,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (3): 1262-1275 被引量:11
标识
DOI:10.1002/mp.14691
摘要

Purpose Early identification of ischemic stroke lesion regions plays a vital role in its treatments like thrombolytic therapy and patients’ recovery. Noncontrast computed tomography (ncCT) is the most widespread imaging modality in emergency departments. Unfortunately, it is extremely hard to distinguish the lesion from healthy tissue during the hyper‐acute phase of stroke. In this paper, a two‐stage convolutional neural network‐based method was proposed to identify the invisible ischemic stroke from ncCT. Methods In order to combine the global and local information of images effectively, a cascaded structure with two coordinated networks was used to detect the suspicious stroke regions on the whole and optimize the detailed localization. In the first stage, an end‐to‐end U‐net with adaptive threshold was proposed to integrate global position, symmetry and gray texture information to detect the suspicious regions. After reducing the interference from most normal regions, a ResNet‐based patch classification network was used to eliminate some false positive samples on suspicious regions by mining deeper image features, contributing to a more precise localization of stroke. Finally, a MAP model was used to optimize the result by combining the classification results of each patch with their spatial constraint information. Results Three independent experiments, that is, training and testing on dataset from one hospital, on the combination of two, and on the two respectively, were performed on a total of 277 cases from two hospitals to validate the proposed model, The proposed method achieved identification accuracy of 91.89%, 87.21%, and 85.71% in the three experiments, and the final localization accuracy in terms of precise localization of stroke were 82.35%, 83.02%, and 81.40%, respectively, which indicated the robustness and clinical values of the method. Conclusions There are some deep image feature differences between stroke region and normal region on ncCT images. The proposed two‐stage convolutional neural network model can well seize these features and use them to effectively identify and locate stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张同学快去做实验呀完成签到,获得积分10
1秒前
4秒前
bkagyin应助haokeyan采纳,获得10
24秒前
Hart完成签到 ,获得积分10
31秒前
善学以致用应助风止采纳,获得10
38秒前
酷波er应助yupeijin采纳,获得10
42秒前
46秒前
50秒前
风止发布了新的文献求助10
52秒前
54秒前
没有昵称发布了新的文献求助10
57秒前
赘婿应助风止采纳,获得10
1分钟前
科研通AI5应助没有昵称采纳,获得10
1分钟前
1分钟前
852应助顺心的星月采纳,获得10
1分钟前
小pppp发布了新的文献求助10
1分钟前
刘大喜发布了新的文献求助10
1分钟前
小pppp完成签到,获得积分10
1分钟前
喵喵发布了新的文献求助230
1分钟前
1分钟前
1分钟前
86400完成签到,获得积分10
1分钟前
1分钟前
香蕉觅云应助zhangyimg采纳,获得10
1分钟前
天天快乐应助Sahar采纳,获得10
1分钟前
1分钟前
1分钟前
uu发布了新的文献求助10
1分钟前
haokeyan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
haokeyan完成签到,获得积分10
2分钟前
Sahar发布了新的文献求助10
2分钟前
竹子完成签到,获得积分10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
m(_._)m完成签到 ,获得积分0
2分钟前
内向耷完成签到 ,获得积分20
2分钟前
Sahar完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832