堆积
阴极
密度泛函理论
氧化还原
歧化
材料科学
结构稳定性
离子
化学物理
磁滞
氧气
无机化学
化学
纳米技术
结晶学
计算化学
物理化学
凝聚态物理
催化作用
物理
工程类
结构工程
生物化学
有机化学
作者
Jean Vergnet,Matthieu Saubanère,Marie‐Liesse Doublet,Jean-Marie Tarascon
出处
期刊:Joule
[Elsevier]
日期:2020-01-08
卷期号:4 (2): 420-434
被引量:105
标识
DOI:10.1016/j.joule.2019.12.003
摘要
The increasing need for sustainable energy storage has rekindled interest for Na-ion batteries. Their energy density can be enhanced using anionic redox (AR), as reported in Na-deficient P2 phases. Contrary to their Li-rich counterparts with O3 stacking, these Na-deficient P2 phases show surprisingly good structural stability during AR. Understanding the fundamental relationship between O and P stacking and AR reversibility thus becomes critical. Herein, using density functional theory (DFT) analysis and modeling of O2- and P2-Na2∕3Mg1∕3Mn2∕3O2, we show that during AR, the oxygen network is stabilized through either (1) a highly reversible collective distortion, in P stacking, or (2) a disproportionation of oxygen pairs leading to voltage hysteresis, in O stacking. Using this 2-distortions model, we describe a magnetic-constrained DFT methodology to predict the critical state of charge for reversible cycling that we successfully extend to other Mn-based cathodes. This article provides fundamental understanding, powerful computational methods, and practical guidelines to design next-generation cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI