Altered resting-state dynamic functional brain networks in major depressive disorder: Findings from the REST-meta-MDD consortium

动态功能连接 重性抑郁障碍 静息状态功能磁共振成像 功能磁共振成像 默认模式网络 神经科学 心理学 内科学 医学 认知
作者
Yicheng Long,Hengyi Cao,Chao‐Gan Yan,Xiao Chen,Le Li,F. Xavier Castellanos,Tongjian Bai,Qijing Bo,Guanmao Chen,Ningxuan Chen,Wei Chen,Chang Cheng,Yuqi Cheng,Xilong Cui,Jia Duan,Yiru Fang,Qiyong Gong,Wenbin Guo,Zhenghua Hou,Lan Hu,Li Kuang,Feng Li,Kaiming Li,Tao Li,Yansong Liu,Qinghua Luo,Huaqing Meng,Daihui Peng,Haitang Qiu,Jiang Qiu,Yuedi Shen,Yu‐Shu Shi,Tianmei Si,Chuanyue Wang,Fei Wang,Kai Wang,Li Wang,Xiang Wang,Ying Wang,Xiaoping Wu,Xinran Wu,Chunming Xie,Guangrong Xie,Haiyan Xie,Peng Xie,Zonglin Shen,Hong Yang,Jian Yang,Jiashu Yao,Shuqiao Yao,Yingying Yin,Yonggui Yuan,Ai‐Xia Zhang,Hong Zhang,Kerang Zhang,Lei Zhang,Zhijun Zhang,Rubai Zhou,Yiting Zhou,Jun‐Juan Zhu,Chao‐Jie Zou,Yu‐Feng Zang,Jingping Zhao,Calais K. Y. Chan,Weidan Pu,Zhening Liu
出处
期刊:NeuroImage: Clinical [Elsevier]
卷期号:26: 102163-102163 被引量:92
标识
DOI:10.1016/j.nicl.2020.102163
摘要

Major depressive disorder (MDD) is known to be characterized by altered brain functional connectivity (FC) patterns. However, whether and how the features of dynamic FC would change in patients with MDD are unclear. In this study, we aimed to characterize dynamic FC in MDD using a large multi-site sample and a novel dynamic network-based approach. Resting-state functional magnetic resonance imaging (fMRI) data were acquired from a total of 460 MDD patients and 473 healthy controls, as a part of the REST-meta-MDD consortium. Resting-state dynamic functional brain networks were constructed for each subject by a sliding-window approach. Multiple spatio-temporal features of dynamic brain networks, including temporal variability, temporal clustering and temporal efficiency, were then compared between patients and healthy subjects at both global and local levels. The group of MDD patients showed significantly higher temporal variability, lower temporal correlation coefficient (indicating decreased temporal clustering) and shorter characteristic temporal path length (indicating increased temporal efficiency) compared with healthy controls (corrected p < 3.14×10−3). Corresponding local changes in MDD were mainly found in the default-mode, sensorimotor and subcortical areas. Measures of temporal variability and characteristic temporal path length were significantly correlated with depression severity in patients (corrected p < 0.05). Moreover, the observed between-group differences were robustly present in both first-episode, drug-naïve (FEDN) and non-FEDN patients. Our findings suggest that excessive temporal variations of brain FC, reflecting abnormal communications between large-scale bran networks over time, may underlie the neuropathology of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
如此这般发布了新的文献求助10
刚刚
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得20
1秒前
852应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
荣荣发布了新的文献求助10
1秒前
1秒前
充电宝应助科研通管家采纳,获得30
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得50
1秒前
Orange应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
Cherish应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
Lori发布了新的文献求助10
2秒前
3秒前
3秒前
郭丹丹完成签到 ,获得积分10
4秒前
景笑天发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492