Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邢邢完成签到,获得积分10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
罗美女应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
瘦瘦雁蓉应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
luluyang完成签到 ,获得积分10
3秒前
热心不凡完成签到,获得积分10
4秒前
跳跃的语柔完成签到 ,获得积分10
4秒前
帝国超级硕士完成签到,获得积分10
4秒前
zhuxiaonian完成签到,获得积分10
5秒前
羞涩的文轩完成签到 ,获得积分10
8秒前
火星上白羊完成签到,获得积分10
8秒前
苏苏完成签到 ,获得积分10
8秒前
Febridge完成签到,获得积分10
9秒前
CML完成签到,获得积分10
12秒前
lin完成签到,获得积分10
12秒前
天流完成签到,获得积分10
12秒前
孙小懒完成签到,获得积分10
14秒前
杨飞完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
满意的醉蝶完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
川ccc完成签到,获得积分10
16秒前
17秒前
王小玮完成签到,获得积分10
20秒前
踏实的酸奶完成签到,获得积分10
22秒前
跳跃完成签到,获得积分10
23秒前
matt完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
川ccc发布了新的文献求助10
25秒前
科研牛马完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715656
求助须知:如何正确求助?哪些是违规求助? 5236162
关于积分的说明 15274773
捐赠科研通 4866356
什么是DOI,文献DOI怎么找? 2612943
邀请新用户注册赠送积分活动 1563102
关于科研通互助平台的介绍 1520599