清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助读书的时候采纳,获得30
刚刚
13秒前
Criminology34应助读书的时候采纳,获得30
17秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
17秒前
30秒前
30秒前
热情依白应助读书的时候采纳,获得30
34秒前
送你一匹马完成签到,获得积分10
34秒前
meeteryu完成签到,获得积分10
43秒前
49秒前
51秒前
大医仁心完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
1分钟前
Criminology34应助读书的时候采纳,获得10
1分钟前
1分钟前
多啦啦发布了新的文献求助30
1分钟前
1分钟前
Ruogu完成签到,获得积分10
1分钟前
阿泽发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
清脆如娆完成签到 ,获得积分10
1分钟前
搜集达人应助多啦啦采纳,获得10
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
1分钟前
领导范儿应助包容山灵采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
1分钟前
ccj完成签到,获得积分20
2分钟前
2分钟前
ccj发布了新的文献求助10
2分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
科研通AI2S应助读书的时候采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
hhhpass应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688129
求助须知:如何正确求助?哪些是违规求助? 5063718
关于积分的说明 15193691
捐赠科研通 4846465
什么是DOI,文献DOI怎么找? 2598868
邀请新用户注册赠送积分活动 1550976
关于科研通互助平台的介绍 1509573