Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢天菱完成签到,获得积分10
5秒前
6秒前
禾苗完成签到 ,获得积分10
6秒前
7秒前
大将军完成签到,获得积分10
8秒前
nemo完成签到,获得积分10
8秒前
莫笑寒发布了新的文献求助10
11秒前
12秒前
doctor发布了新的文献求助10
12秒前
15秒前
清秀灵薇完成签到,获得积分10
17秒前
18秒前
莫笑寒完成签到,获得积分10
20秒前
22秒前
23秒前
用心听完成签到,获得积分20
23秒前
烟花应助王359采纳,获得10
23秒前
栗子发布了新的文献求助10
23秒前
成就问寒发布了新的文献求助30
24秒前
ff完成签到,获得积分10
25秒前
固的曼完成签到,获得积分10
26秒前
用心听发布了新的文献求助10
29秒前
31秒前
34秒前
成就问寒完成签到,获得积分10
36秒前
HeyYou完成签到,获得积分10
38秒前
上进生发布了新的文献求助10
38秒前
40秒前
研友_qZ6V1Z完成签到,获得积分20
40秒前
41秒前
42秒前
富兰克林的薄荷糖完成签到,获得积分10
42秒前
44秒前
46秒前
无辜访彤发布了新的文献求助10
46秒前
丘比特应助SS采纳,获得10
47秒前
王359发布了新的文献求助10
47秒前
海城好人发布了新的文献求助30
48秒前
王359完成签到,获得积分10
52秒前
詹密完成签到,获得积分10
53秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228