Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向樱发布了新的文献求助10
1秒前
2秒前
柏不斜发布了新的文献求助10
2秒前
2秒前
lk0312完成签到,获得积分10
2秒前
情怀应助dummy采纳,获得10
3秒前
4秒前
CodeCraft应助高兴的牛排采纳,获得10
4秒前
5秒前
6秒前
Jasper应助鳗鱼梦寒采纳,获得10
6秒前
金金金金完成签到,获得积分10
6秒前
姬师完成签到,获得积分10
7秒前
嘉博学长发布了新的文献求助10
7秒前
Fng11发布了新的文献求助10
7秒前
Y12发布了新的文献求助10
8秒前
8秒前
顾矜应助青馨花语采纳,获得10
9秒前
甘特完成签到 ,获得积分10
10秒前
XIAOBAI完成签到,获得积分10
10秒前
姬师发布了新的文献求助10
10秒前
12秒前
12秒前
xi完成签到,获得积分10
13秒前
13秒前
乐乐应助洽洽瓜子shine采纳,获得10
14秒前
YYYYZ发布了新的文献求助10
14秒前
14秒前
xijq发布了新的文献求助30
15秒前
Steven发布了新的文献求助10
16秒前
18秒前
18秒前
852应助xx采纳,获得10
18秒前
19秒前
无极微光应助呀呀呀采纳,获得20
19秒前
21秒前
领导范儿应助萨尼铁塔采纳,获得10
21秒前
敏敏完成签到,获得积分10
22秒前
23秒前
dummy发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588641
求助须知:如何正确求助?哪些是违规求助? 4671653
关于积分的说明 14788329
捐赠科研通 4625960
什么是DOI,文献DOI怎么找? 2531900
邀请新用户注册赠送积分活动 1500473
关于科研通互助平台的介绍 1468324