亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实书包完成签到,获得积分10
1秒前
1秒前
Chris完成签到 ,获得积分10
4秒前
cy发布了新的文献求助10
8秒前
小蝶完成签到 ,获得积分10
11秒前
Eileen完成签到 ,获得积分0
12秒前
14秒前
娜行完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
弋鱼发布了新的文献求助10
20秒前
胡大笑哈哈哈完成签到 ,获得积分10
23秒前
25秒前
正直的山雁完成签到,获得积分10
26秒前
cy发布了新的文献求助10
30秒前
完美世界应助党弛采纳,获得10
33秒前
乐乐应助弋鱼采纳,获得10
36秒前
Zeno完成签到 ,获得积分10
37秒前
聪明勇敢有力气完成签到 ,获得积分10
41秒前
舒适的石头完成签到,获得积分10
47秒前
小夜子完成签到 ,获得积分10
48秒前
50秒前
qingcahng发布了新的文献求助30
54秒前
勤劳冰枫发布了新的文献求助10
1分钟前
Lucas应助党弛采纳,获得10
1分钟前
华仔应助qingcahng采纳,获得30
1分钟前
1分钟前
1分钟前
善学以致用应助西西采纳,获得10
1分钟前
充电宝应助amy采纳,获得10
1分钟前
1分钟前
1分钟前
zorro3574完成签到,获得积分10
1分钟前
amy发布了新的文献求助10
1分钟前
ZJ完成签到,获得积分10
1分钟前
xky200125完成签到 ,获得积分10
1分钟前
freeaway发布了新的文献求助10
1分钟前
辛勤三问完成签到,获得积分10
1分钟前
1分钟前
花花公子完成签到,获得积分10
1分钟前
freeaway完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657845
求助须知:如何正确求助?哪些是违规求助? 4812927
关于积分的说明 15080444
捐赠科研通 4816043
什么是DOI,文献DOI怎么找? 2577063
邀请新用户注册赠送积分活动 1532055
关于科研通互助平台的介绍 1490626