亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默尔蓝发布了新的文献求助10
16秒前
呆毛发布了新的文献求助10
23秒前
英姑应助幽默尔蓝采纳,获得10
28秒前
sunstar完成签到,获得积分10
47秒前
后会无期完成签到,获得积分10
48秒前
50秒前
yxl完成签到,获得积分10
51秒前
53秒前
cmc完成签到,获得积分10
53秒前
可耐的盈完成签到,获得积分10
54秒前
绿毛水怪完成签到,获得积分10
58秒前
cmc发布了新的文献求助100
59秒前
1分钟前
lsc完成签到,获得积分10
1分钟前
aa111发布了新的文献求助10
1分钟前
小fei完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
1分钟前
华仔应助aa111采纳,获得10
1分钟前
时尚身影完成签到,获得积分10
1分钟前
1分钟前
流苏完成签到,获得积分0
1分钟前
流苏2完成签到,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
001关闭了001文献求助
1分钟前
怕孤独的若云完成签到,获得积分10
1分钟前
1分钟前
chenjzhuc完成签到,获得积分10
2分钟前
a3265640发布了新的文献求助20
2分钟前
lcw1998发布了新的文献求助10
2分钟前
2分钟前
apple完成签到,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
my发布了新的文献求助20
2分钟前
情怀应助a3265640采纳,获得10
2分钟前
leemiii完成签到 ,获得积分10
2分钟前
3分钟前
a3265640完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463288
求助须知:如何正确求助?哪些是违规求助? 4568033
关于积分的说明 14312347
捐赠科研通 4493945
什么是DOI,文献DOI怎么找? 2461987
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426200