Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks

人工智能 计算机科学 卷积神经网络 分割 模式识别(心理学) Sørensen–骰子系数 基本事实 推论 人工神经网络 图像分割 深度学习 相似性(几何) 机器学习 图像(数学)
作者
William S. Burton,Casey A. Myers,Paul J. Rullkoetter
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:189: 105328-105328 被引量:20
标识
DOI:10.1016/j.cmpb.2020.105328
摘要

Segmentation is a crucial step in multiple biomechanics and orthopedics applications. The time-intensiveness and expertise requirements of medical image segmentation present a significant bottleneck for corresponding workflows. The current study develops and evaluates convolutional neural networks (CNNs) for automatic segmentation of magnetic resonance imaging (MRI) with the objective of assessing their utility for use in biomechanics research methods. CNNs were developed using a previously published, fully-annotated dataset as well as unlabeled scans from a publicly-available dataset. 2D and 3D CNNs were trained using semi-supervised learning frameworks for automatic segmentation of six structures of the knee. An inference strategy called Monte Carlo patch sampling was introduced to increase accuracy of the resulting models while adding no additional steps to the training process. Performance was assessed using traditional segmentation metrics, as well as surface error between reconstructed geometries from predicted and manual segmentations. Geometries from predicted segmentation maps were developed into finite element (FE) models in a semi-automatic pipeline and evaluated for FE-readiness. 3D CNNs using Monte Carlo patch sampling during inference achieved an Intersection-over-Union (IoU) of 0.978 and a dice similarity coefficient (DSC) of 0.989. Median surface error between predicted and ground truth geometries ranged from 0.56 to 0.98 mm. Meshes generated from the predicted segmentation maps were successfully used in FE simulations, demonstrating FE-readiness of geometries predicted by CNNs. CNNs trained with semi-supervised techniques outperformed CNNs trained in a fully-supervised fashion and resulted in performance competitive with similar literature despite relying on significantly less labeled data. CNNs developed for automatic segmentation have potential for supplementing manual segmentation workflows in a wide range of orthopedics and biomechanics applications, including FE analysis. Faster processing times for developing FE models can enable population-based FE analysis using subject-specific models. The use of semi-supervised learning algorithms may additionally help circumvent the cost of obtaining labeled data in the development of these models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邪恶青年完成签到,获得积分10
刚刚
burn完成签到,获得积分10
刚刚
Boring完成签到 ,获得积分10
1秒前
Zfx完成签到,获得积分10
1秒前
迪鸣完成签到,获得积分0
2秒前
2秒前
权秋尽完成签到,获得积分10
2秒前
小怪兽完成签到 ,获得积分10
3秒前
健壮的芷容完成签到,获得积分10
3秒前
AZN完成签到,获得积分10
3秒前
Garfieldlilac完成签到,获得积分10
4秒前
4秒前
橘子石榴完成签到,获得积分10
5秒前
纯真电源完成签到 ,获得积分20
5秒前
勤奋的如松完成签到,获得积分0
5秒前
和谐亦瑶完成签到,获得积分10
5秒前
能接受微辣完成签到,获得积分10
6秒前
零玖完成签到 ,获得积分10
6秒前
剁手党完成签到,获得积分10
6秒前
隐形小兔子完成签到,获得积分10
7秒前
eazin完成签到 ,获得积分10
7秒前
大头粽完成签到,获得积分10
7秒前
粗暴的遥完成签到,获得积分10
7秒前
狂野忆文完成签到,获得积分10
7秒前
xfzhang完成签到,获得积分20
8秒前
狂野盼易发布了新的文献求助10
8秒前
XXXX完成签到,获得积分10
8秒前
8秒前
四辈完成签到,获得积分10
9秒前
LinYX完成签到,获得积分10
9秒前
菠萝汁完成签到,获得积分10
9秒前
hyhyh完成签到,获得积分10
10秒前
研友_8415kL发布了新的文献求助20
10秒前
刘珍荣完成签到,获得积分10
11秒前
xinglin完成签到 ,获得积分10
11秒前
hmhu完成签到,获得积分10
13秒前
didoo完成签到,获得积分10
13秒前
Wqhao完成签到,获得积分10
13秒前
13秒前
minus完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259