Joint Entity and Relation Extraction With Set Prediction Networks

计算机科学 二部图 集合(抽象数据类型) 人工智能 模式识别(心理学) 算法 理论计算机科学 图形 程序设计语言
作者
Dianbo Sui,Xiangrong Zeng,Yubo Chen,Kang Liu,Jun Zhao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:47
标识
DOI:10.1109/tnnls.2023.3264735
摘要

Joint entity and relation extraction is an important task in natural language processing, which aims to extract all relational triples mentioned in a given sentence. In essence, the relational triples mentioned in a sentence are in the form of a set, which has no intrinsic order between elements and exhibits the permutation invariant feature. However, previous seq2seq-based models require sorting the set of relational triples into a sequence beforehand with some heuristic global rules, which destroys the natural set structure. In order to break this bottleneck, we treat joint entity and relation extraction as a direct set prediction problem, so that the extraction model is not burdened with predicting the order of multiple triples. To solve this set prediction problem, we propose networks featured by transformers with non-autoregressive parallel decoding. In contrast to autoregressive approaches that generate triples one by one in a specific order, the proposed networks are able to directly output the final set of relational triples in one shot. Furthermore, we also design a set-based loss that forces unique predictions through bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in triple order, the proposed bipartite matching loss is invariant to any permutation of predictions; thus, it can provide the proposed networks with a more accurate training signal by ignoring triple order and focusing on relation types and entities. Various experiments on two benchmark datasets demonstrate that our proposed model significantly outperforms the current state-of-the-art (SoTA) models. Training code and trained models are now publicly available at http://github.com/DianboWork/SPN4RE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Baccano完成签到,获得积分10
1秒前
科研同路人完成签到,获得积分0
1秒前
xiang完成签到,获得积分10
1秒前
年轻的路人完成签到,获得积分10
3秒前
cyrong完成签到,获得积分10
3秒前
kyle完成签到 ,获得积分10
3秒前
务实蓝关注了科研通微信公众号
4秒前
程哲瀚完成签到,获得积分10
4秒前
充电宝应助小李博士采纳,获得10
5秒前
JinZ完成签到,获得积分10
5秒前
131343完成签到,获得积分10
6秒前
xiaofei666应助Aprial采纳,获得20
7秒前
Lucas应助聂学雨采纳,获得10
7秒前
Dream完成签到,获得积分0
7秒前
maxyer完成签到,获得积分10
7秒前
服部平次完成签到,获得积分10
8秒前
8秒前
明理宛秋完成签到 ,获得积分10
8秒前
Singularity应助Lion Li采纳,获得10
9秒前
zzz完成签到 ,获得积分10
9秒前
guoweisleep完成签到,获得积分10
9秒前
Bagpipe完成签到 ,获得积分10
11秒前
11秒前
上上谦完成签到,获得积分10
11秒前
喜悦香萱完成签到 ,获得积分10
12秒前
鱼饼完成签到 ,获得积分10
12秒前
lt2完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI2S应助流川枫采纳,获得10
13秒前
Misaki发布了新的文献求助10
13秒前
可爱的芷云完成签到,获得积分20
14秒前
14秒前
14秒前
汤翔完成签到,获得积分10
15秒前
司空悒完成签到,获得积分0
16秒前
巫马夜安完成签到,获得积分10
17秒前
小李博士发布了新的文献求助10
17秒前
dayueban完成签到,获得积分10
17秒前
朴素的问枫完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792