Joint Entity and Relation Extraction With Set Prediction Networks

计算机科学 二部图 集合(抽象数据类型) 人工智能 模式识别(心理学) 算法 理论计算机科学 图形 程序设计语言
作者
Dianbo Sui,Xiangrong Zeng,Yubo Chen,Kang Liu,Jun Zhao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12784-12795 被引量:182
标识
DOI:10.1109/tnnls.2023.3264735
摘要

The joint entity and relation extraction task aims to extract all relational triples from a sentence. In essence, the relational triples contained in a sentence are unordered. However, previous seq2seq based models require to convert the set of triples into a sequence in the training phase. To break this bottleneck, we treat joint entity and relation extraction as a direct set prediction problem, so that the extraction model can get rid of the burden of predicting the order of multiple triples. To solve this set prediction problem, we propose networks featured by transformers with non-autoregressive parallel decoding. Unlike autoregressive approaches that generate triples one by one in a certain order, the proposed networks directly output the final set of triples in one shot. Furthermore, we also design a set-based loss that forces unique predictions via bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in triple order, the proposed bipartite matching loss is invariant to any permutation of predictions; thus, it can provide the proposed networks with a more accurate training signal by ignoring triple order and focusing on relation types and entities. Experiments on two benchmark datasets show that our proposed model significantly outperforms current state-of-the-art methods. Training code and trained models will be available at http://github.com/DianboWork/SPN4RE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助缥缈的友琴采纳,获得10
1秒前
bolunxier完成签到,获得积分10
1秒前
你都至少信我八分吧完成签到 ,获得积分10
2秒前
无情发卡完成签到,获得积分10
2秒前
桐桐应助今晚打老虎采纳,获得10
2秒前
zyz953398531发布了新的文献求助10
2秒前
liao应助hxx采纳,获得30
2秒前
Singhi发布了新的文献求助10
3秒前
浮游应助ren采纳,获得10
3秒前
蔡佩翰发布了新的文献求助20
3秒前
橘子发布了新的文献求助10
3秒前
称心的依琴完成签到,获得积分10
3秒前
3秒前
zj发布了新的文献求助10
5秒前
大个应助XTT采纳,获得50
7秒前
Vanilla应助讨厌的十九岁采纳,获得20
8秒前
研友_LNMmW8发布了新的文献求助20
8秒前
9秒前
肥牛芋泥泥完成签到,获得积分10
9秒前
9秒前
兀拉拉完成签到,获得积分10
10秒前
10秒前
高贵煜祺完成签到,获得积分10
10秒前
zyz953398531完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
茹茹完成签到 ,获得积分10
14秒前
14秒前
纯白色完成签到,获得积分10
14秒前
14秒前
胖头鱼566发布了新的文献求助10
15秒前
15秒前
无情发卡发布了新的文献求助10
15秒前
15秒前
jcx发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
Vanilla应助讨厌的十九岁采纳,获得20
16秒前
16秒前
ynwa完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002