Joint Entity and Relation Extraction With Set Prediction Networks

计算机科学 二部图 集合(抽象数据类型) 人工智能 模式识别(心理学) 算法 理论计算机科学 图形 程序设计语言
作者
Dianbo Sui,Xiangrong Zeng,Yubo Chen,Kang Liu,Jun Zhao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12784-12795 被引量:182
标识
DOI:10.1109/tnnls.2023.3264735
摘要

The joint entity and relation extraction task aims to extract all relational triples from a sentence. In essence, the relational triples contained in a sentence are unordered. However, previous seq2seq based models require to convert the set of triples into a sequence in the training phase. To break this bottleneck, we treat joint entity and relation extraction as a direct set prediction problem, so that the extraction model can get rid of the burden of predicting the order of multiple triples. To solve this set prediction problem, we propose networks featured by transformers with non-autoregressive parallel decoding. Unlike autoregressive approaches that generate triples one by one in a certain order, the proposed networks directly output the final set of triples in one shot. Furthermore, we also design a set-based loss that forces unique predictions via bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in triple order, the proposed bipartite matching loss is invariant to any permutation of predictions; thus, it can provide the proposed networks with a more accurate training signal by ignoring triple order and focusing on relation types and entities. Experiments on two benchmark datasets show that our proposed model significantly outperforms current state-of-the-art methods. Training code and trained models will be available at http://github.com/DianboWork/SPN4RE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
1秒前
1秒前
炙热萝发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助羰醛采纳,获得10
2秒前
英姑应助Lemonade采纳,获得10
3秒前
4秒前
6秒前
6秒前
科目三应助Satan采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
柠檬味de_完成签到 ,获得积分10
7秒前
7秒前
cauwindwill完成签到,获得积分10
8秒前
8秒前
JamesPei应助快乐的柚子采纳,获得10
10秒前
白日幻想家完成签到 ,获得积分10
10秒前
27完成签到 ,获得积分10
11秒前
HK发布了新的文献求助30
11秒前
JamesPei应助羰醛采纳,获得10
12秒前
无花果应助zane采纳,获得10
13秒前
平淡的懿轩完成签到,获得积分10
14秒前
15秒前
风为裳完成签到,获得积分10
18秒前
18秒前
来杯乌龙茶完成签到,获得积分10
19秒前
科研通AI6应助小鱼采纳,获得10
19秒前
19秒前
Satan发布了新的文献求助10
19秒前
19秒前
20秒前
在水一方应助开心依珊采纳,获得30
21秒前
熊猫之歌完成签到,获得积分10
22秒前
麦可发布了新的文献求助10
23秒前
Owen应助没有稗子采纳,获得10
23秒前
23秒前
Brook1985完成签到,获得积分10
23秒前
明明发布了新的文献求助10
25秒前
我发大文章完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537662
求助须知:如何正确求助?哪些是违规求助? 4625146
关于积分的说明 14594680
捐赠科研通 4565616
什么是DOI,文献DOI怎么找? 2502535
邀请新用户注册赠送积分活动 1481073
关于科研通互助平台的介绍 1452288