Joint Entity and Relation Extraction With Set Prediction Networks

计算机科学 二部图 集合(抽象数据类型) 人工智能 模式识别(心理学) 算法 理论计算机科学 图形 程序设计语言
作者
Dianbo Sui,Xiangrong Zeng,Yubo Chen,Kang Liu,Jun Zhao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12784-12795 被引量:138
标识
DOI:10.1109/tnnls.2023.3264735
摘要

The joint entity and relation extraction task aims to extract all relational triples from a sentence. In essence, the relational triples contained in a sentence are unordered. However, previous seq2seq based models require to convert the set of triples into a sequence in the training phase. To break this bottleneck, we treat joint entity and relation extraction as a direct set prediction problem, so that the extraction model can get rid of the burden of predicting the order of multiple triples. To solve this set prediction problem, we propose networks featured by transformers with non-autoregressive parallel decoding. Unlike autoregressive approaches that generate triples one by one in a certain order, the proposed networks directly output the final set of triples in one shot. Furthermore, we also design a set-based loss that forces unique predictions via bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in triple order, the proposed bipartite matching loss is invariant to any permutation of predictions; thus, it can provide the proposed networks with a more accurate training signal by ignoring triple order and focusing on relation types and entities. Experiments on two benchmark datasets show that our proposed model significantly outperforms current state-of-the-art methods. Training code and trained models will be available at http://github.com/DianboWork/SPN4RE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖寻雪发布了新的文献求助10
1秒前
皮蛋妹妹发布了新的文献求助10
1秒前
派大星完成签到,获得积分10
3秒前
深情安青应助花雨落123采纳,获得10
4秒前
是草莓发布了新的文献求助10
4秒前
聂落雁完成签到,获得积分10
4秒前
5秒前
6秒前
garatasari完成签到,获得积分10
7秒前
儒雅盼曼完成签到 ,获得积分10
7秒前
10秒前
pcx发布了新的文献求助10
10秒前
IvyLee完成签到,获得积分10
11秒前
儒雅盼曼关注了科研通微信公众号
12秒前
在水一方应助哈哈哈采纳,获得10
12秒前
13秒前
醉酒笑红尘完成签到,获得积分10
13秒前
15秒前
pluto应助淡挞采纳,获得50
16秒前
李明完成签到,获得积分10
16秒前
杰西卡卡给杰西卡卡的求助进行了留言
16秒前
Singularity应助朴素的荠采纳,获得10
16秒前
灵泽发布了新的文献求助30
18秒前
无聊的凉面完成签到,获得积分10
18秒前
21秒前
CyndiaSUN完成签到,获得积分10
22秒前
23秒前
23秒前
Lucas应助1111111采纳,获得10
24秒前
CR7应助木木采纳,获得10
24秒前
匆匆完成签到,获得积分10
24秒前
娜娜完成签到,获得积分10
24秒前
25秒前
孟孟1215发布了新的文献求助10
26秒前
好久不见发布了新的文献求助10
27秒前
斯文败类应助科研通管家采纳,获得30
27秒前
奥特超曼应助科研通管家采纳,获得10
27秒前
奥特超曼应助科研通管家采纳,获得10
27秒前
yar应助科研通管家采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075